forked from lballabio/QuantLib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstochasticprocess.hpp
320 lines (292 loc) · 12.6 KB
/
stochasticprocess.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
Copyright (C) 2004, 2005 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<[email protected]>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file stochasticprocess.hpp
\brief stochastic processes
*/
#ifndef quantlib_stochastic_process_hpp
#define quantlib_stochastic_process_hpp
#include <ql/time/date.hpp>
#include <ql/patterns/observable.hpp>
#include <ql/math/matrix.hpp>
namespace QuantLib {
//! multi-dimensional stochastic process class.
/*! This class describes a stochastic process governed by
\f[
d\mathrm{x}_t = \mu(t, x_t)\mathrm{d}t
+ \sigma(t, \mathrm{x}_t) \cdot d\mathrm{W}_t.
\f]
*/
class StochasticProcess : public Observer, public Observable {
public:
//! discretization of a stochastic process over a given time interval
class discretization {
public:
virtual ~discretization() = default;
virtual Array drift(const StochasticProcess&,
Time t0,
const Array& x0,
Time dt) const = 0;
virtual Matrix diffusion(const StochasticProcess&,
Time t0,
const Array& x0,
Time dt) const = 0;
virtual Matrix covariance(const StochasticProcess&,
Time t0,
const Array& x0,
Time dt) const = 0;
};
~StochasticProcess() override = default;
//! \name Stochastic process interface
//@{
//! returns the number of dimensions of the stochastic process
virtual Size size() const = 0;
//! returns the number of independent factors of the process
virtual Size factors() const;
//! returns the initial values of the state variables
virtual Array initialValues() const = 0;
/*! \brief returns the drift part of the equation, i.e.,
\f$ \mu(t, \mathrm{x}_t) \f$
*/
virtual Array drift(Time t,
const Array& x) const = 0;
/*! \brief returns the diffusion part of the equation, i.e.
\f$ \sigma(t, \mathrm{x}_t) \f$
*/
virtual Matrix diffusion(Time t,
const Array& x) const = 0;
/*! returns the expectation
\f$ E(\mathrm{x}_{t_0 + \Delta t}
| \mathrm{x}_{t_0} = \mathrm{x}_0) \f$
of the process after a time interval \f$ \Delta t \f$
according to the given discretization. This method can be
overridden in derived classes which want to hard-code a
particular discretization.
*/
virtual Array expectation(Time t0,
const Array& x0,
Time dt) const;
/*! returns the standard deviation
\f$ S(\mathrm{x}_{t_0 + \Delta t}
| \mathrm{x}_{t_0} = \mathrm{x}_0) \f$
of the process after a time interval \f$ \Delta t \f$
according to the given discretization. This method can be
overridden in derived classes which want to hard-code a
particular discretization.
*/
virtual Matrix stdDeviation(Time t0,
const Array& x0,
Time dt) const;
/*! returns the covariance
\f$ V(\mathrm{x}_{t_0 + \Delta t}
| \mathrm{x}_{t_0} = \mathrm{x}_0) \f$
of the process after a time interval \f$ \Delta t \f$
according to the given discretization. This method can be
overridden in derived classes which want to hard-code a
particular discretization.
*/
virtual Matrix covariance(Time t0,
const Array& x0,
Time dt) const;
/*! returns the asset value after a time interval \f$ \Delta t
\f$ according to the given discretization. By default, it
returns
\f[
E(\mathrm{x}_0,t_0,\Delta t) +
S(\mathrm{x}_0,t_0,\Delta t) \cdot \Delta \mathrm{w}
\f]
where \f$ E \f$ is the expectation and \f$ S \f$ the
standard deviation.
*/
virtual Array evolve(Time t0,
const Array& x0,
Time dt,
const Array& dw) const;
/*! applies a change to the asset value. By default, it
returns \f$ \mathrm{x} + \Delta \mathrm{x} \f$.
*/
virtual Array apply(const Array& x0,
const Array& dx) const;
//@}
//! \name utilities
//@{
/*! returns the time value corresponding to the given date
in the reference system of the stochastic process.
\note As a number of processes might not need this
functionality, a default implementation is given
which raises an exception.
*/
virtual Time time(const Date&) const;
//@}
//! \name Observer interface
//@{
void update() override;
//@}
protected:
StochasticProcess() = default;
explicit StochasticProcess(ext::shared_ptr<discretization>);
ext::shared_ptr<discretization> discretization_;
};
//! 1-dimensional stochastic process
/*! This class describes a stochastic process governed by
\f[
dx_t = \mu(t, x_t)dt + \sigma(t, x_t)dW_t.
\f]
*/
class StochasticProcess1D : public StochasticProcess {
public:
//! discretization of a 1-D stochastic process
class discretization {
public:
virtual ~discretization() = default;
virtual Real drift(const StochasticProcess1D&,
Time t0, Real x0, Time dt) const = 0;
virtual Real diffusion(const StochasticProcess1D&,
Time t0, Real x0, Time dt) const = 0;
virtual Real variance(const StochasticProcess1D&,
Time t0, Real x0, Time dt) const = 0;
};
//! \name 1-D stochastic process interface
//@{
//! returns the initial value of the state variable
virtual Real x0() const = 0;
//! returns the drift part of the equation, i.e. \f$ \mu(t, x_t) \f$
virtual Real drift(Time t, Real x) const = 0;
/*! \brief returns the diffusion part of the equation, i.e.
\f$ \sigma(t, x_t) \f$
*/
virtual Real diffusion(Time t, Real x) const = 0;
/*! returns the expectation
\f$ E(x_{t_0 + \Delta t} | x_{t_0} = x_0) \f$
of the process after a time interval \f$ \Delta t \f$
according to the given discretization. This method can be
overridden in derived classes which want to hard-code a
particular discretization.
*/
virtual Real expectation(Time t0, Real x0, Time dt) const;
/*! returns the standard deviation
\f$ S(x_{t_0 + \Delta t} | x_{t_0} = x_0) \f$
of the process after a time interval \f$ \Delta t \f$
according to the given discretization. This method can be
overridden in derived classes which want to hard-code a
particular discretization.
*/
virtual Real stdDeviation(Time t0, Real x0, Time dt) const;
/*! returns the variance
\f$ V(x_{t_0 + \Delta t} | x_{t_0} = x_0) \f$
of the process after a time interval \f$ \Delta t \f$
according to the given discretization. This method can be
overridden in derived classes which want to hard-code a
particular discretization.
*/
virtual Real variance(Time t0, Real x0, Time dt) const;
/*! returns the asset value after a time interval \f$ \Delta t
\f$ according to the given discretization. By default, it
returns
\f[
E(x_0,t_0,\Delta t) + S(x_0,t_0,\Delta t) \cdot \Delta w
\f]
where \f$ E \f$ is the expectation and \f$ S \f$ the
standard deviation.
*/
virtual Real evolve(Time t0, Real x0, Time dt, Real dw) const;
/*! applies a change to the asset value. By default, it
returns \f$ x + \Delta x \f$.
*/
virtual Real apply(Real x0, Real dx) const;
//@}
protected:
StochasticProcess1D() = default;
explicit StochasticProcess1D(ext::shared_ptr<discretization>);
ext::shared_ptr<discretization> discretization_;
private:
// StochasticProcess interface implementation
Size size() const override;
Array initialValues() const override;
Array drift(Time t, const Array& x) const override;
Matrix diffusion(Time t, const Array& x) const override;
Array expectation(Time t0, const Array& x0, Time dt) const override;
Matrix stdDeviation(Time t0, const Array& x0, Time dt) const override;
Matrix covariance(Time t0, const Array& x0, Time dt) const override;
Array evolve(Time t0, const Array& x0, Time dt, const Array& dw) const override;
Array apply(const Array& x0, const Array& dx) const override;
};
// inline definitions
inline Size StochasticProcess1D::size() const {
return 1;
}
inline Array StochasticProcess1D::initialValues() const {
Array a(1, x0());
return a;
}
inline Array StochasticProcess1D::drift(Time t, const Array& x) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(x.size() == 1, "1-D array required");
#endif
Array a(1, drift(t, x[0]));
return a;
}
inline Matrix StochasticProcess1D::diffusion(Time t, const Array& x) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(x.size() == 1, "1-D array required");
#endif
Matrix m(1, 1, diffusion(t, x[0]));
return m;
}
inline Array StochasticProcess1D::expectation(
Time t0, const Array& x0, Time dt) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(x0.size() == 1, "1-D array required");
#endif
Array a(1, expectation(t0, x0[0], dt));
return a;
}
inline Matrix StochasticProcess1D::stdDeviation(
Time t0, const Array& x0, Time dt) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(x0.size() == 1, "1-D array required");
#endif
Matrix m(1, 1, stdDeviation(t0, x0[0], dt));
return m;
}
inline Matrix StochasticProcess1D::covariance(
Time t0, const Array& x0, Time dt) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(x0.size() == 1, "1-D array required");
#endif
Matrix m(1, 1, variance(t0, x0[0], dt));
return m;
}
inline Array StochasticProcess1D::evolve(Time t0, const Array& x0,
Time dt, const Array& dw) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(x0.size() == 1, "1-D array required");
QL_REQUIRE(dw.size() == 1, "1-D array required");
#endif
Array a(1, evolve(t0,x0[0],dt,dw[0]));
return a;
}
inline Array StochasticProcess1D::apply(const Array& x0,
const Array& dx) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(x0.size() == 1, "1-D array required");
QL_REQUIRE(dx.size() == 1, "1-D array required");
#endif
Array a(1, apply(x0[0],dx[0]));
return a;
}
}
#endif