forked from gcc-mirror/gcc
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbb-reorder.c
2964 lines (2486 loc) · 88.2 KB
/
bb-reorder.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Basic block reordering routines for the GNU compiler.
Copyright (C) 2000-2017 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file contains the "reorder blocks" pass, which changes the control
flow of a function to encounter fewer branches; the "partition blocks"
pass, which divides the basic blocks into "hot" and "cold" partitions,
which are kept separate; and the "duplicate computed gotos" pass, which
duplicates blocks ending in an indirect jump.
There are two algorithms for "reorder blocks": the "simple" algorithm,
which just rearranges blocks, trying to minimize the number of executed
unconditional branches; and the "software trace cache" algorithm, which
also copies code, and in general tries a lot harder to have long linear
pieces of machine code executed. This algorithm is described next. */
/* This (greedy) algorithm constructs traces in several rounds.
The construction starts from "seeds". The seed for the first round
is the entry point of the function. When there are more than one seed,
the one with the lowest key in the heap is selected first (see bb_to_key).
Then the algorithm repeatedly adds the most probable successor to the end
of a trace. Finally it connects the traces.
There are two parameters: Branch Threshold and Exec Threshold.
If the probability of an edge to a successor of the current basic block is
lower than Branch Threshold or its count is lower than Exec Threshold,
then the successor will be the seed in one of the next rounds.
Each round has these parameters lower than the previous one.
The last round has to have these parameters set to zero so that the
remaining blocks are picked up.
The algorithm selects the most probable successor from all unvisited
successors and successors that have been added to this trace.
The other successors (that has not been "sent" to the next round) will be
other seeds for this round and the secondary traces will start from them.
If the successor has not been visited in this trace, it is added to the
trace (however, there is some heuristic for simple branches).
If the successor has been visited in this trace, a loop has been found.
If the loop has many iterations, the loop is rotated so that the source
block of the most probable edge going out of the loop is the last block
of the trace.
If the loop has few iterations and there is no edge from the last block of
the loop going out of the loop, the loop header is duplicated.
When connecting traces, the algorithm first checks whether there is an edge
from the last block of a trace to the first block of another trace.
When there are still some unconnected traces it checks whether there exists
a basic block BB such that BB is a successor of the last block of a trace
and BB is a predecessor of the first block of another trace. In this case,
BB is duplicated, added at the end of the first trace and the traces are
connected through it.
The rest of traces are simply connected so there will be a jump to the
beginning of the rest of traces.
The above description is for the full algorithm, which is used when the
function is optimized for speed. When the function is optimized for size,
in order to reduce long jumps and connect more fallthru edges, the
algorithm is modified as follows:
(1) Break long traces to short ones. A trace is broken at a block that has
multiple predecessors/ successors during trace discovery. When connecting
traces, only connect Trace n with Trace n + 1. This change reduces most
long jumps compared with the above algorithm.
(2) Ignore the edge probability and count for fallthru edges.
(3) Keep the original order of blocks when there is no chance to fall
through. We rely on the results of cfg_cleanup.
To implement the change for code size optimization, block's index is
selected as the key and all traces are found in one round.
References:
"Software Trace Cache"
A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
http://citeseer.nj.nec.com/15361.html
*/
#include "config.h"
#define INCLUDE_ALGORITHM /* stable_sort */
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "output.h"
#include "expr.h"
#include "params.h"
#include "tree-pass.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "bb-reorder.h"
#include "except.h"
#include "fibonacci_heap.h"
#include "stringpool.h"
#include "attribs.h"
/* The number of rounds. In most cases there will only be 4 rounds, but
when partitioning hot and cold basic blocks into separate sections of
the object file there will be an extra round. */
#define N_ROUNDS 5
struct target_bb_reorder default_target_bb_reorder;
#if SWITCHABLE_TARGET
struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
#endif
#define uncond_jump_length \
(this_target_bb_reorder->x_uncond_jump_length)
/* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
/* Exec thresholds in thousandths (per mille) of the count of bb 0. */
static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
/* If edge count is lower than DUPLICATION_THRESHOLD per mille of entry
block the edge destination is not duplicated while connecting traces. */
#define DUPLICATION_THRESHOLD 100
typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
/* Structure to hold needed information for each basic block. */
struct bbro_basic_block_data
{
/* Which trace is the bb start of (-1 means it is not a start of any). */
int start_of_trace;
/* Which trace is the bb end of (-1 means it is not an end of any). */
int end_of_trace;
/* Which trace is the bb in? */
int in_trace;
/* Which trace was this bb visited in? */
int visited;
/* Cached maximum frequency of interesting incoming edges.
Minus one means not yet computed. */
int priority;
/* Which heap is BB in (if any)? */
bb_heap_t *heap;
/* Which heap node is BB in (if any)? */
bb_heap_node_t *node;
};
/* The current size of the following dynamic array. */
static int array_size;
/* The array which holds needed information for basic blocks. */
static bbro_basic_block_data *bbd;
/* To avoid frequent reallocation the size of arrays is greater than needed,
the number of elements is (not less than) 1.25 * size_wanted. */
#define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
/* Free the memory and set the pointer to NULL. */
#define FREE(P) (gcc_assert (P), free (P), P = 0)
/* Structure for holding information about a trace. */
struct trace
{
/* First and last basic block of the trace. */
basic_block first, last;
/* The round of the STC creation which this trace was found in. */
int round;
/* The length (i.e. the number of basic blocks) of the trace. */
int length;
};
/* Maximum count of one of the entry blocks. */
static profile_count max_entry_count;
/* Local function prototypes. */
static void find_traces_1_round (int, profile_count, struct trace *, int *,
int, bb_heap_t **, int);
static basic_block copy_bb (basic_block, edge, basic_block, int);
static long bb_to_key (basic_block);
static bool better_edge_p (const_basic_block, const_edge, profile_probability,
profile_count, profile_probability, profile_count,
const_edge);
static bool copy_bb_p (const_basic_block, int);
/* Return the trace number in which BB was visited. */
static int
bb_visited_trace (const_basic_block bb)
{
gcc_assert (bb->index < array_size);
return bbd[bb->index].visited;
}
/* This function marks BB that it was visited in trace number TRACE. */
static void
mark_bb_visited (basic_block bb, int trace)
{
bbd[bb->index].visited = trace;
if (bbd[bb->index].heap)
{
bbd[bb->index].heap->delete_node (bbd[bb->index].node);
bbd[bb->index].heap = NULL;
bbd[bb->index].node = NULL;
}
}
/* Check to see if bb should be pushed into the next round of trace
collections or not. Reasons for pushing the block forward are 1).
If the block is cold, we are doing partitioning, and there will be
another round (cold partition blocks are not supposed to be
collected into traces until the very last round); or 2). There will
be another round, and the basic block is not "hot enough" for the
current round of trace collection. */
static bool
push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
profile_count count_th)
{
bool there_exists_another_round;
bool block_not_hot_enough;
there_exists_another_round = round < number_of_rounds - 1;
block_not_hot_enough = (bb->count < count_th
|| probably_never_executed_bb_p (cfun, bb));
if (there_exists_another_round
&& block_not_hot_enough)
return true;
else
return false;
}
/* Find the traces for Software Trace Cache. Chain each trace through
RBI()->next. Store the number of traces to N_TRACES and description of
traces to TRACES. */
static void
find_traces (int *n_traces, struct trace *traces)
{
int i;
int number_of_rounds;
edge e;
edge_iterator ei;
bb_heap_t *heap = new bb_heap_t (LONG_MIN);
/* Add one extra round of trace collection when partitioning hot/cold
basic blocks into separate sections. The last round is for all the
cold blocks (and ONLY the cold blocks). */
number_of_rounds = N_ROUNDS - 1;
/* Insert entry points of function into heap. */
max_entry_count = profile_count::zero ();
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
{
bbd[e->dest->index].heap = heap;
bbd[e->dest->index].node = heap->insert (bb_to_key (e->dest), e->dest);
if (e->dest->count > max_entry_count)
max_entry_count = e->dest->count;
}
/* Find the traces. */
for (i = 0; i < number_of_rounds; i++)
{
profile_count count_threshold;
if (dump_file)
fprintf (dump_file, "STC - round %d\n", i + 1);
count_threshold = max_entry_count.apply_scale (exec_threshold[i], 1000);
find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
count_threshold, traces, n_traces, i, &heap,
number_of_rounds);
}
delete heap;
if (dump_file)
{
for (i = 0; i < *n_traces; i++)
{
basic_block bb;
fprintf (dump_file, "Trace %d (round %d): ", i + 1,
traces[i].round + 1);
for (bb = traces[i].first;
bb != traces[i].last;
bb = (basic_block) bb->aux)
{
fprintf (dump_file, "%d [", bb->index);
bb->count.dump (dump_file);
fprintf (dump_file, "] ");
}
fprintf (dump_file, "%d [", bb->index);
bb->count.dump (dump_file);
fprintf (dump_file, "]\n");
}
fflush (dump_file);
}
}
/* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
(with sequential number TRACE_N). */
static basic_block
rotate_loop (edge back_edge, struct trace *trace, int trace_n)
{
basic_block bb;
/* Information about the best end (end after rotation) of the loop. */
basic_block best_bb = NULL;
edge best_edge = NULL;
profile_count best_count = profile_count::uninitialized ();
/* The best edge is preferred when its destination is not visited yet
or is a start block of some trace. */
bool is_preferred = false;
/* Find the most frequent edge that goes out from current trace. */
bb = back_edge->dest;
do
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
&& bb_visited_trace (e->dest) != trace_n
&& (e->flags & EDGE_CAN_FALLTHRU)
&& !(e->flags & EDGE_COMPLEX))
{
if (is_preferred)
{
/* The best edge is preferred. */
if (!bb_visited_trace (e->dest)
|| bbd[e->dest->index].start_of_trace >= 0)
{
/* The current edge E is also preferred. */
if (e->count () > best_count)
{
best_count = e->count ();
best_edge = e;
best_bb = bb;
}
}
}
else
{
if (!bb_visited_trace (e->dest)
|| bbd[e->dest->index].start_of_trace >= 0)
{
/* The current edge E is preferred. */
is_preferred = true;
best_count = e->count ();
best_edge = e;
best_bb = bb;
}
else
{
if (!best_edge || e->count () > best_count)
{
best_count = e->count ();
best_edge = e;
best_bb = bb;
}
}
}
}
bb = (basic_block) bb->aux;
}
while (bb != back_edge->dest);
if (best_bb)
{
/* Rotate the loop so that the BEST_EDGE goes out from the last block of
the trace. */
if (back_edge->dest == trace->first)
{
trace->first = (basic_block) best_bb->aux;
}
else
{
basic_block prev_bb;
for (prev_bb = trace->first;
prev_bb->aux != back_edge->dest;
prev_bb = (basic_block) prev_bb->aux)
;
prev_bb->aux = best_bb->aux;
/* Try to get rid of uncond jump to cond jump. */
if (single_succ_p (prev_bb))
{
basic_block header = single_succ (prev_bb);
/* Duplicate HEADER if it is a small block containing cond jump
in the end. */
if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
&& !CROSSING_JUMP_P (BB_END (header)))
copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
}
}
}
else
{
/* We have not found suitable loop tail so do no rotation. */
best_bb = back_edge->src;
}
best_bb->aux = NULL;
return best_bb;
}
/* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
not include basic blocks whose probability is lower than BRANCH_TH or whose
count is lower than EXEC_TH into traces (or whose count is lower than
COUNT_TH). Store the new traces into TRACES and modify the number of
traces *N_TRACES. Set the round (which the trace belongs to) to ROUND.
The function expects starting basic blocks to be in *HEAP and will delete
*HEAP and store starting points for the next round into new *HEAP. */
static void
find_traces_1_round (int branch_th, profile_count count_th,
struct trace *traces, int *n_traces, int round,
bb_heap_t **heap, int number_of_rounds)
{
/* Heap for discarded basic blocks which are possible starting points for
the next round. */
bb_heap_t *new_heap = new bb_heap_t (LONG_MIN);
bool for_size = optimize_function_for_size_p (cfun);
while (!(*heap)->empty ())
{
basic_block bb;
struct trace *trace;
edge best_edge, e;
long key;
edge_iterator ei;
bb = (*heap)->extract_min ();
bbd[bb->index].heap = NULL;
bbd[bb->index].node = NULL;
if (dump_file)
fprintf (dump_file, "Getting bb %d\n", bb->index);
/* If the BB's count is too low, send BB to the next round. When
partitioning hot/cold blocks into separate sections, make sure all
the cold blocks (and ONLY the cold blocks) go into the (extra) final
round. When optimizing for size, do not push to next round. */
if (!for_size
&& push_to_next_round_p (bb, round, number_of_rounds,
count_th))
{
int key = bb_to_key (bb);
bbd[bb->index].heap = new_heap;
bbd[bb->index].node = new_heap->insert (key, bb);
if (dump_file)
fprintf (dump_file,
" Possible start point of next round: %d (key: %d)\n",
bb->index, key);
continue;
}
trace = traces + *n_traces;
trace->first = bb;
trace->round = round;
trace->length = 0;
bbd[bb->index].in_trace = *n_traces;
(*n_traces)++;
do
{
bool ends_in_call;
/* The probability and count of the best edge. */
profile_probability best_prob = profile_probability::uninitialized ();
profile_count best_count = profile_count::uninitialized ();
best_edge = NULL;
mark_bb_visited (bb, *n_traces);
trace->length++;
if (dump_file)
fprintf (dump_file, "Basic block %d was visited in trace %d\n",
bb->index, *n_traces);
ends_in_call = block_ends_with_call_p (bb);
/* Select the successor that will be placed after BB. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
gcc_assert (!(e->flags & EDGE_FAKE));
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
continue;
if (bb_visited_trace (e->dest)
&& bb_visited_trace (e->dest) != *n_traces)
continue;
/* If partitioning hot/cold basic blocks, don't consider edges
that cross section boundaries. */
if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
continue;
profile_probability prob = e->probability;
profile_count count = e->dest->count;
/* The only sensible preference for a call instruction is the
fallthru edge. Don't bother selecting anything else. */
if (ends_in_call)
{
if (e->flags & EDGE_CAN_FALLTHRU)
{
best_edge = e;
best_prob = prob;
best_count = count;
}
continue;
}
/* Edge that cannot be fallthru or improbable or infrequent
successor (i.e. it is unsuitable successor). When optimizing
for size, ignore the probability and count. */
if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
|| !prob.initialized_p ()
|| ((prob.to_reg_br_prob_base () < branch_th
|| e->count () < count_th) && (!for_size)))
continue;
if (better_edge_p (bb, e, prob, count, best_prob, best_count,
best_edge))
{
best_edge = e;
best_prob = prob;
best_count = count;
}
}
/* If the best destination has multiple predecessors and can be
duplicated cheaper than a jump, don't allow it to be added to
a trace; we'll duplicate it when connecting the traces later.
However, we need to check that this duplication wouldn't leave
the best destination with only crossing predecessors, because
this would change its effective partition from hot to cold. */
if (best_edge
&& EDGE_COUNT (best_edge->dest->preds) >= 2
&& copy_bb_p (best_edge->dest, 0))
{
bool only_crossing_preds = true;
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, best_edge->dest->preds)
if (e != best_edge && !(e->flags & EDGE_CROSSING))
{
only_crossing_preds = false;
break;
}
if (!only_crossing_preds)
best_edge = NULL;
}
/* If the best destination has multiple successors or predecessors,
don't allow it to be added when optimizing for size. This makes
sure predecessors with smaller index are handled before the best
destinarion. It breaks long trace and reduces long jumps.
Take if-then-else as an example.
A
/ \
B C
\ /
D
If we do not remove the best edge B->D/C->D, the final order might
be A B D ... C. C is at the end of the program. If D's successors
and D are complicated, might need long jumps for A->C and C->D.
Similar issue for order: A C D ... B.
After removing the best edge, the final result will be ABCD/ ACBD.
It does not add jump compared with the previous order. But it
reduces the possibility of long jumps. */
if (best_edge && for_size
&& (EDGE_COUNT (best_edge->dest->succs) > 1
|| EDGE_COUNT (best_edge->dest->preds) > 1))
best_edge = NULL;
/* Add all non-selected successors to the heaps. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e == best_edge
|| e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
|| bb_visited_trace (e->dest))
continue;
key = bb_to_key (e->dest);
if (bbd[e->dest->index].heap)
{
/* E->DEST is already in some heap. */
if (key != bbd[e->dest->index].node->get_key ())
{
if (dump_file)
{
fprintf (dump_file,
"Changing key for bb %d from %ld to %ld.\n",
e->dest->index,
(long) bbd[e->dest->index].node->get_key (),
key);
}
bbd[e->dest->index].heap->replace_key
(bbd[e->dest->index].node, key);
}
}
else
{
bb_heap_t *which_heap = *heap;
profile_probability prob = e->probability;
if (!(e->flags & EDGE_CAN_FALLTHRU)
|| (e->flags & EDGE_COMPLEX)
|| !prob.initialized_p ()
|| prob.to_reg_br_prob_base () < branch_th
|| e->count () < count_th)
{
/* When partitioning hot/cold basic blocks, make sure
the cold blocks (and only the cold blocks) all get
pushed to the last round of trace collection. When
optimizing for size, do not push to next round. */
if (!for_size && push_to_next_round_p (e->dest, round,
number_of_rounds,
count_th))
which_heap = new_heap;
}
bbd[e->dest->index].heap = which_heap;
bbd[e->dest->index].node = which_heap->insert (key, e->dest);
if (dump_file)
{
fprintf (dump_file,
" Possible start of %s round: %d (key: %ld)\n",
(which_heap == new_heap) ? "next" : "this",
e->dest->index, (long) key);
}
}
}
if (best_edge) /* Suitable successor was found. */
{
if (bb_visited_trace (best_edge->dest) == *n_traces)
{
/* We do nothing with one basic block loops. */
if (best_edge->dest != bb)
{
if (best_edge->count ()
> best_edge->dest->count.apply_scale (4, 5))
{
/* The loop has at least 4 iterations. If the loop
header is not the first block of the function
we can rotate the loop. */
if (best_edge->dest
!= ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
{
if (dump_file)
{
fprintf (dump_file,
"Rotating loop %d - %d\n",
best_edge->dest->index, bb->index);
}
bb->aux = best_edge->dest;
bbd[best_edge->dest->index].in_trace =
(*n_traces) - 1;
bb = rotate_loop (best_edge, trace, *n_traces);
}
}
else
{
/* The loop has less than 4 iterations. */
if (single_succ_p (bb)
&& copy_bb_p (best_edge->dest,
optimize_edge_for_speed_p
(best_edge)))
{
bb = copy_bb (best_edge->dest, best_edge, bb,
*n_traces);
trace->length++;
}
}
}
/* Terminate the trace. */
break;
}
else
{
/* Check for a situation
A
/|
B |
\|
C
where
AB->count () + BC->count () >= AC->count ().
(i.e. 2 * B->count >= AC->count )
Best ordering is then A B C.
When optimizing for size, A B C is always the best order.
This situation is created for example by:
if (A) B;
C;
*/
FOR_EACH_EDGE (e, ei, bb->succs)
if (e != best_edge
&& (e->flags & EDGE_CAN_FALLTHRU)
&& !(e->flags & EDGE_COMPLEX)
&& !bb_visited_trace (e->dest)
&& single_pred_p (e->dest)
&& !(e->flags & EDGE_CROSSING)
&& single_succ_p (e->dest)
&& (single_succ_edge (e->dest)->flags
& EDGE_CAN_FALLTHRU)
&& !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
&& single_succ (e->dest) == best_edge->dest
&& (e->dest->count.apply_scale (2, 1)
>= best_edge->count () || for_size))
{
best_edge = e;
if (dump_file)
fprintf (dump_file, "Selecting BB %d\n",
best_edge->dest->index);
break;
}
bb->aux = best_edge->dest;
bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
bb = best_edge->dest;
}
}
}
while (best_edge);
trace->last = bb;
bbd[trace->first->index].start_of_trace = *n_traces - 1;
if (bbd[trace->last->index].end_of_trace != *n_traces - 1)
{
bbd[trace->last->index].end_of_trace = *n_traces - 1;
/* Update the cached maximum frequency for interesting predecessor
edges for successors of the new trace end. */
FOR_EACH_EDGE (e, ei, trace->last->succs)
if (EDGE_FREQUENCY (e) > bbd[e->dest->index].priority)
bbd[e->dest->index].priority = EDGE_FREQUENCY (e);
}
/* The trace is terminated so we have to recount the keys in heap
(some block can have a lower key because now one of its predecessors
is an end of the trace). */
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
|| bb_visited_trace (e->dest))
continue;
if (bbd[e->dest->index].heap)
{
key = bb_to_key (e->dest);
if (key != bbd[e->dest->index].node->get_key ())
{
if (dump_file)
{
fprintf (dump_file,
"Changing key for bb %d from %ld to %ld.\n",
e->dest->index,
(long) bbd[e->dest->index].node->get_key (), key);
}
bbd[e->dest->index].heap->replace_key
(bbd[e->dest->index].node, key);
}
}
}
}
delete (*heap);
/* "Return" the new heap. */
*heap = new_heap;
}
/* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
it to trace after BB, mark OLD_BB visited and update pass' data structures
(TRACE is a number of trace which OLD_BB is duplicated to). */
static basic_block
copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
{
basic_block new_bb;
new_bb = duplicate_block (old_bb, e, bb);
BB_COPY_PARTITION (new_bb, old_bb);
gcc_assert (e->dest == new_bb);
if (dump_file)
fprintf (dump_file,
"Duplicated bb %d (created bb %d)\n",
old_bb->index, new_bb->index);
if (new_bb->index >= array_size
|| last_basic_block_for_fn (cfun) > array_size)
{
int i;
int new_size;
new_size = MAX (last_basic_block_for_fn (cfun), new_bb->index + 1);
new_size = GET_ARRAY_SIZE (new_size);
bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
for (i = array_size; i < new_size; i++)
{
bbd[i].start_of_trace = -1;
bbd[i].end_of_trace = -1;
bbd[i].in_trace = -1;
bbd[i].visited = 0;
bbd[i].priority = -1;
bbd[i].heap = NULL;
bbd[i].node = NULL;
}
array_size = new_size;
if (dump_file)
{
fprintf (dump_file,
"Growing the dynamic array to %d elements.\n",
array_size);
}
}
gcc_assert (!bb_visited_trace (e->dest));
mark_bb_visited (new_bb, trace);
new_bb->aux = bb->aux;
bb->aux = new_bb;
bbd[new_bb->index].in_trace = trace;
return new_bb;
}
/* Compute and return the key (for the heap) of the basic block BB. */
static long
bb_to_key (basic_block bb)
{
edge e;
edge_iterator ei;
/* Use index as key to align with its original order. */
if (optimize_function_for_size_p (cfun))
return bb->index;
/* Do not start in probably never executed blocks. */
if (BB_PARTITION (bb) == BB_COLD_PARTITION
|| probably_never_executed_bb_p (cfun, bb))
return BB_FREQ_MAX;
/* Prefer blocks whose predecessor is an end of some trace
or whose predecessor edge is EDGE_DFS_BACK. */
int priority = bbd[bb->index].priority;
if (priority == -1)
{
priority = 0;
FOR_EACH_EDGE (e, ei, bb->preds)
{
if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
&& bbd[e->src->index].end_of_trace >= 0)
|| (e->flags & EDGE_DFS_BACK))
{
int edge_freq = EDGE_FREQUENCY (e);
if (edge_freq > priority)
priority = edge_freq;
}
}
bbd[bb->index].priority = priority;
}
if (priority)
/* The block with priority should have significantly lower key. */
return -(100 * BB_FREQ_MAX + 100 * priority + bb->count.to_frequency (cfun));
return -bb->count.to_frequency (cfun);
}
/* Return true when the edge E from basic block BB is better than the temporary
best edge (details are in function). The probability of edge E is PROB. The
count of the successor is COUNT. The current best probability is
BEST_PROB, the best count is BEST_COUNT.
The edge is considered to be equivalent when PROB does not differ much from
BEST_PROB; similarly for count. */
static bool
better_edge_p (const_basic_block bb, const_edge e, profile_probability prob,
profile_count count, profile_probability best_prob,
profile_count best_count, const_edge cur_best_edge)
{
bool is_better_edge;
/* The BEST_* values do not have to be best, but can be a bit smaller than
maximum values. */
profile_probability diff_prob = best_prob.apply_scale (1, 10);
/* The smaller one is better to keep the original order. */
if (optimize_function_for_size_p (cfun))
return !cur_best_edge
|| cur_best_edge->dest->index > e->dest->index;
/* Those edges are so expensive that continuing a trace is not useful
performance wise. */
if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
return false;
if (prob > best_prob + diff_prob
|| (!best_prob.initialized_p ()
&& prob > profile_probability::guessed_never ()))
/* The edge has higher probability than the temporary best edge. */
is_better_edge = true;
else if (prob < best_prob - diff_prob)
/* The edge has lower probability than the temporary best edge. */
is_better_edge = false;
else
{
profile_count diff_count = best_count.apply_scale (1, 10);
if (count < best_count - diff_count
|| (!best_count.initialized_p ()
&& count.nonzero_p ()))
/* The edge and the temporary best edge have almost equivalent
probabilities. The higher countuency of a successor now means
that there is another edge going into that successor.
This successor has lower countuency so it is better. */
is_better_edge = true;
else if (count > best_count + diff_count)
/* This successor has higher countuency so it is worse. */
is_better_edge = false;
else if (e->dest->prev_bb == bb)
/* The edges have equivalent probabilities and the successors
have equivalent frequencies. Select the previous successor. */
is_better_edge = true;
else
is_better_edge = false;
}
return is_better_edge;
}
/* Return true when the edge E is better than the temporary best edge
CUR_BEST_EDGE. If SRC_INDEX_P is true, the function compares the src bb of
E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
TRACES record the information about traces.
When optimizing for size, the edge with smaller index is better.
When optimizing for speed, the edge with bigger probability or longer trace
is better. */