This package contains a PyTorch implementation of GraphSAGE.
Authors of this code package: Tianwen Jiang ([email protected]), Tong Zhao ([email protected]).
- python==3.6.8
- pytorch==1.0.0
Main Parameters:
--dataSet The input graph dataset. (default: cora)
--agg_func The aggregate function. (default: Mean aggregater)
--epochs Number of epochs. (default: 200)
--b_sz Batch size. (default: 20)
--seed Random seed. (default: 824)
--num_neg Number of negative samples in each batch. (default: 100)
--config Config file. (default: ./src/experiments.conf)
--cuda Use cuda if declared.
Loss function The user must specify a loss function by --learn_method, ...
Example Usage To run the unsupervised model on Cuda:
python -m src.main --epochs 100 --cuda --learn_method unsup