forked from BrainJS/brain.js
-
Notifications
You must be signed in to change notification settings - Fork 3
/
train-stream.js
168 lines (135 loc) · 5.47 KB
/
train-stream.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }();
var _stream = require('stream');
function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } }
function _possibleConstructorReturn(self, call) { if (!self) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return call && (typeof call === "object" || typeof call === "function") ? call : self; }
function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function, not " + typeof superClass); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, enumerable: false, writable: true, configurable: true } }); if (superClass) Object.setPrototypeOf ? Object.setPrototypeOf(subClass, superClass) : subClass.__proto__ = superClass; }
/**
*
* @param opts
* @returns {TrainStream}
* @constructor
*/
var TrainStream = function (_Writable) {
_inherits(TrainStream, _Writable);
function TrainStream(options) {
_classCallCheck(this, TrainStream);
var _this = _possibleConstructorReturn(this, (TrainStream.__proto__ || Object.getPrototypeOf(TrainStream)).call(this, {
objectMode: true
}));
options = options || {};
// require the neuralNetwork
if (!options.neuralNetwork) {
throw new Error('no neural network specified');
}
var _options = options,
neuralNetwork = _options.neuralNetwork;
_this.neuralNetwork = neuralNetwork;
_this.dataFormatDetermined = false;
_this.i = 0; // keep track of internal iterations
_this.size = 0;
_this.count = 0;
_this.sum = 0;
_this.floodCallback = options.floodCallback;
_this.doneTrainingCallback = options.doneTrainingCallback;
// inherit trainOpts settings from neuralNetwork
neuralNetwork.updateTrainingOptions(options);
var trainOpts = neuralNetwork.trainOpts;
_this.iterations = trainOpts.iterations;
_this.errorThresh = trainOpts.errorThresh;
_this.log = trainOpts.log;
_this.logPeriod = trainOpts.logPeriod;
_this.callbackPeriod = trainOpts.callbackPeriod;
_this.callback = trainOpts.callback;
_this.on('finish', _this.finishStreamIteration.bind(_this));
return _this;
}
_createClass(TrainStream, [{
key: 'endInputs',
value: function endInputs() {
this.write(false);
}
/**
* _write expects data to be in the form of a datum. ie. {input: {a: 1 b: 0}, output: {z: 0}}
* @param chunk
* @param enc
* @param next
* @returns {*}
* @private
*/
}, {
key: '_write',
value: function _write(chunk, enc, next) {
if (!chunk) {
// check for the end of one iteration of the stream
this.emit('finish');
return next();
}
if (!this.dataFormatDetermined) {
this.size++;
this.neuralNetwork.addFormat(chunk);
this.firstDatum = this.firstDatum || chunk;
return next();
}
this.count++;
var data = this.neuralNetwork.formatData(chunk);
this.sum += this.neuralNetwork.trainPattern(data[0], true);
// tell the Readable Stream that we are ready for more data
next();
}
/**
*
* @returns {*}
*/
}, {
key: 'finishStreamIteration',
value: function finishStreamIteration() {
if (this.dataFormatDetermined && this.size !== this.count) {
this.log('This iteration\'s data length was different from the first.');
}
if (!this.dataFormatDetermined) {
var data = this.neuralNetwork.formatData(this.firstDatum);
this.neuralNetwork.verifyIsInitialized(data);
this.dataFormatDetermined = true;
if (typeof this.floodCallback === 'function') {
this.floodCallback();
}
return;
}
var error = this.sum / this.size;
if (this.log && this.i % this.logPeriod === 0) {
this.log('iterations: ' + this.i + ', training error: ' + error);
}
if (this.callback && this.i % this.callbackPeriod === 0) {
this.callback({
error: error,
iterations: this.i
});
}
this.sum = 0;
this.count = 0;
// update the iterations
this.i++;
// do a check here to see if we need the stream again
if (this.i < this.iterations && error > this.errorThresh) {
if (typeof this.floodCallback === 'function') {
return this.floodCallback();
}
} else {
// done training
if (typeof this.doneTrainingCallback === 'function') {
return this.doneTrainingCallback({
error: error,
iterations: this.i
});
}
}
}
}]);
return TrainStream;
}(_stream.Writable);
exports.default = TrainStream;
//# sourceMappingURL=train-stream.js.map