Skip to content

symoon9/Pretrained-IPT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

Pre-Trained Image Processing Transformer (IPT)

By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, Wen Gao. [arXiv]

We study the low-level computer vision task (such as denoising, super-resolution and deraining) and develop a new pre-trained model, namely, image processing transformer (IPT). We present to utilize the well-known ImageNet benchmark for generating a large amount of corrupted image pairs. The IPT model is trained on these images with multi-heads and multi-tails. The pre-trained model can therefore efficiently employed on desired task after fine-tuning. With only one pre-trained model, IPT outperforms the current state-of-the-art methods on various low-level benchmarks.

MindSpore Code

News

  • Pytorch pre-trained model will be released in June!

Requirements

  • python 3
  • pytorch >= 1.4.0
  • torchvision

Usage

Coming soon!

Results

  • Detailed results on image super-resolution task.
Method Scale Set5 Set14 B100 Urban100
VDSR $\times$2 37.53 33.05 31.90 30.77
EDSR $\times$2 38.11 33.92 32.32 32.93
RCAN $\times$2 38.27 34.12 32.41 33.34
RDN $\times$2 38.24 34.01 32.34 32.89
OISR-RK3 $\times$2 38.21 33.94 32.36 33.03
RNAN $\times$2 38.17 33.87 32.32 32.73
SAN $\times$2 38.31 34.07 32.42 33.1
HAN $\times$2 38.27 34.16 32.41 33.35
IGNN $\times$2 38.24 34.07 32.41 33.23
IPT (ours) $\times$2 38.37 34.43 32.48 33.76
Method Scale Set5 Set14 B100 Urban100
VDSR $\times$3 33.67 29.78 28.83 27.14
EDSR $\times$3 34.65 30.52 29.25 28.80
RCAN $\times$3 34.74 30.65 29.32 29.09
RDN $\times$3 34.71 30.57 29.26 28.80
OISR-RK3 $\times$3 34.72 30.57 29.29 28.95
RNAN $\times$3 34.66 30.52 29.26 28.75
SAN $\times$3 34.75 30.59 29.33 28.93
HAN $\times$3 34.75 30.67 29.32 29.10
IGNN $\times$3 34.72 30.66 29.31 29.03
IPT (ours) $\times$3 34.81 30.85 29.38 29.49
Method Scale Set5 Set14 B100 Urban100
VDSR $\times$4 31.35 28.02 27.29 25.18
EDSR $\times$4 32.46 28.80 27.71 26.64
RCAN $\times$4 32.63 28.87 27.77 26.82
SAN $\times$4 32.64 28.92 27.78 26.79
RDN $\times$4 32.47 28.81 27.72 26.61
OISR-RK3 $\times$4 32.53 28.86 27.75 26.79
RNAN $\times$4 32.49 28.83 27.72 26.61
HAN $\times$4 32.64 28.90 27.80 26.85
IGNN $\times$4 32.57 28.85 27.77 26.84
IPT (ours) $\times$4 32.64 29.01 27.82 27.26
  • Super-resolution result

  • Denoising result

  • Derain result

Citation

@misc{chen2020pre,
      title={Pre-Trained Image Processing Transformer}, 
      author={Chen, Hanting and Wang, Yunhe and Guo, Tianyu and Xu, Chang and Deng, Yiping and Liu, Zhenhua and Ma, Siwei and Xu, Chunjing and Xu, Chao and Gao, Wen},
      year={2021},
      eprint={2012.00364},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%