Skip to content

Support Yolov5s,m,l,x .darknet -> tensorrt. Yolov4 Yolov3 use raw darknet *.weights and *.cfg fils. If the wrapper is useful to you,please Star it.

License

Notifications You must be signed in to change notification settings

syswyl/yolo-tensorrt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

97 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Yolov5 Yolov4 Yolov3 TensorRT Implementation

GitHub stars GitHub forks GitHub watchers Gitter

news: yolov5 support

INTRODUCTION

The project is the encapsulation of nvidia official yolo-tensorrt implementation. And you must have the trained yolo model(.weights) and .cfg file from the darknet (yolov3 & yolov4). For the yolov5 ,you should prepare the model file (yolov5s.yaml) and the trained weight file (yolov5s.pt) from pytorch.

  • yolov5s , yolov5m , yolov5l , yolov5x tutorial
  • yolov4 , yolov4-tiny
  • yolov3 , yolov3-tiny

Features

  • inequal net width and height
  • batch inference
  • support FP32,FP16,INT8
  • daynamic input size

PLATFORM & PERFORMENCE

  • windows 10
  • ubuntu 18.04
  • L4T (Jetson platform)
model gpu precision detect time(with pre and post process)
yolov3-416x416 jetson nano (15w) FP16 250ms
yolov3-416x416 jetson xavier nx (15w 6core) FP32 120ms
yolov3-416x416 jetson xavier nx (15w 6core) FP16 45ms
yolov3-416x416 jetson xavier nx (15w 6core) INT8 35ms

WRAPPER

Prepare the pretrained .weights and .cfg model.

Detector detector;
Config config;

std::vector<BatchResult> res;
detector.detect(vec_image, res)

Build and use yolo-trt as DLL or SO libraries

windows10

  • dependency : TensorRT 7.1.3.4 , cuda 11.0 , cudnn 8.0 , opencv4 , vs2015

  • build:

    open MSVC sln/sln.sln file

    • dll project : the trt yolo detector dll
    • demo project : test of the dll

ubuntu & L4T (jetson)

The project generate the libdetector.so lib, and the sample code. If you want to use the libdetector.so lib in your own project,this cmake file perhaps could help you .

git clone https://github.com/enazoe/yolo-tensorrt.git
cd yolo-tensorrt/
mkdir build
cd build/
cmake ..
make
./yolo-trt

API

struct Config
{
	std::string file_model_cfg = "configs/yolov4.cfg";

	std::string file_model_weights = "configs/yolov4.weights";

	float detect_thresh = 0.9;

	ModelType net_type = YOLOV4;

	Precision inference_precison = INT8;
	
	int gpu_id = 0;

	std::string calibration_image_list_file_txt = "configs/calibration_images.txt";

	int n_max_batch = 4;	
};

class API Detector
{
public:
	explicit Detector();
	~Detector();

	void init(const Config &config);

	void detect(const std::vector<cv::Mat> &mat_image,std::vector<BatchResult> &vec_batch_result);

private:
	Detector(const Detector &);
	const Detector &operator =(const Detector &);
	class Impl;
	Impl *_impl;
};

REFERENCE

Contact

qq group id: 1151955802

About

Support Yolov5s,m,l,x .darknet -> tensorrt. Yolov4 Yolov3 use raw darknet *.weights and *.cfg fils. If the wrapper is useful to you,please Star it.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 79.1%
  • Jupyter Notebook 9.5%
  • Cuda 9.1%
  • Python 1.5%
  • Other 0.8%