forked from HiLab-git/SSL4MIS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mean_teacher_3D.py
265 lines (225 loc) · 11.1 KB
/
train_mean_teacher_3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import argparse
import logging
import os
import random
import shutil
import sys
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tensorboardX import SummaryWriter
from torch.nn import BCEWithLogitsLoss
from torch.nn.modules.loss import CrossEntropyLoss
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import make_grid
from tqdm import tqdm
from dataloaders import utils
from dataloaders.brats2019 import (BraTS2019, CenterCrop, RandomCrop,
RandomRotFlip, ToTensor,
TwoStreamBatchSampler)
from networks.net_factory_3d import net_factory_3d
from utils import losses, metrics, ramps
from val_3D import test_all_case
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str,
default='../data/BraTS2019', help='Name of Experiment')
parser.add_argument('--exp', type=str,
default='BraTs2019_Mean_Teacher', help='experiment_name')
parser.add_argument('--model', type=str,
default='unet_3D', help='model_name')
parser.add_argument('--max_iterations', type=int,
default=30000, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int, default=4,
help='batch_size per gpu')
parser.add_argument('--deterministic', type=int, default=1,
help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.01,
help='segmentation network learning rate')
parser.add_argument('--patch_size', type=list, default=[96, 96, 96],
help='patch size of network input')
parser.add_argument('--seed', type=int, default=1337, help='random seed')
# label and unlabel
parser.add_argument('--labeled_bs', type=int, default=2,
help='labeled_batch_size per gpu')
parser.add_argument('--labeled_num', type=int, default=25,
help='labeled data')
# costs
parser.add_argument('--ema_decay', type=float, default=0.99, help='ema_decay')
parser.add_argument('--consistency_type', type=str,
default="mse", help='consistency_type')
parser.add_argument('--consistency', type=float,
default=0.1, help='consistency')
parser.add_argument('--consistency_rampup', type=float,
default=200.0, help='consistency_rampup')
args = parser.parse_args()
def get_current_consistency_weight(epoch):
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_rampup)
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
def train(args, snapshot_path):
base_lr = args.base_lr
train_data_path = args.root_path
batch_size = args.batch_size
max_iterations = args.max_iterations
num_classes = 2
def create_model(ema=False):
# Network definition
net = net_factory_3d(net_type=args.model, in_chns=1, class_num=num_classes)
model = net.cuda()
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
ema_model = create_model(ema=True)
db_train = BraTS2019(base_dir=train_data_path,
split='train',
num=None,
transform=transforms.Compose([
RandomRotFlip(),
RandomCrop(args.patch_size),
ToTensor(),
]))
def worker_init_fn(worker_id):
random.seed(args.seed + worker_id)
labeled_idxs = list(range(0, args.labeled_num))
unlabeled_idxs = list(range(args.labeled_num, 250))
batch_sampler = TwoStreamBatchSampler(
labeled_idxs, unlabeled_idxs, batch_size, batch_size-args.labeled_bs)
trainloader = DataLoader(db_train, batch_sampler=batch_sampler,
num_workers=4, pin_memory=True, worker_init_fn=worker_init_fn)
model.train()
ema_model.train()
optimizer = optim.SGD(model.parameters(), lr=base_lr,
momentum=0.9, weight_decay=0.0001)
ce_loss = CrossEntropyLoss()
dice_loss = losses.DiceLoss(2)
writer = SummaryWriter(snapshot_path + '/log')
logging.info("{} iterations per epoch".format(len(trainloader)))
iter_num = 0
max_epoch = max_iterations // len(trainloader) + 1
best_performance = 0.0
iterator = tqdm(range(max_epoch), ncols=70)
for epoch_num in iterator:
for i_batch, sampled_batch in enumerate(trainloader):
volume_batch, label_batch = sampled_batch['image'], sampled_batch['label']
volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()
unlabeled_volume_batch = volume_batch[args.labeled_bs:]
noise = torch.clamp(torch.randn_like(
unlabeled_volume_batch) * 0.1, -0.2, 0.2)
ema_inputs = unlabeled_volume_batch + noise
outputs = model(volume_batch)
outputs_soft = torch.softmax(outputs, dim=1)
with torch.no_grad():
ema_output = ema_model(ema_inputs)
ema_output_soft = torch.softmax(ema_output, dim=1)
loss_ce = ce_loss(outputs[:args.labeled_bs],
label_batch[:args.labeled_bs][:])
loss_dice = dice_loss(
outputs_soft[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1))
supervised_loss = 0.5 * (loss_dice + loss_ce)
consistency_weight = get_current_consistency_weight(iter_num//150)
consistency_loss = torch.mean(
(outputs_soft[args.labeled_bs:] - ema_output_soft)**2)
loss = supervised_loss + consistency_weight * consistency_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
update_ema_variables(model, ema_model, args.ema_decay, iter_num)
lr_ = base_lr * (1.0 - iter_num / max_iterations) ** 0.9
for param_group in optimizer.param_groups:
param_group['lr'] = lr_
iter_num = iter_num + 1
writer.add_scalar('info/lr', lr_, iter_num)
writer.add_scalar('info/total_loss', loss, iter_num)
writer.add_scalar('info/loss_ce', loss_ce, iter_num)
writer.add_scalar('info/loss_dice', loss_dice, iter_num)
writer.add_scalar('info/consistency_loss',
consistency_loss, iter_num)
writer.add_scalar('info/consistency_weight',
consistency_weight, iter_num)
logging.info(
'iteration %d : loss : %f, loss_ce: %f, loss_dice: %f' %
(iter_num, loss.item(), loss_ce.item(), loss_dice.item()))
writer.add_scalar('loss/loss', loss, iter_num)
if iter_num % 20 == 0:
image = volume_batch[0, 0:1, :, :, 20:61:10].permute(
3, 0, 1, 2).repeat(1, 3, 1, 1)
grid_image = make_grid(image, 5, normalize=True)
writer.add_image('train/Image', grid_image, iter_num)
image = outputs_soft[0, 1:2, :, :, 20:61:10].permute(
3, 0, 1, 2).repeat(1, 3, 1, 1)
grid_image = make_grid(image, 5, normalize=False)
writer.add_image('train/Predicted_label',
grid_image, iter_num)
image = label_batch[0, :, :, 20:61:10].unsqueeze(
0).permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
grid_image = make_grid(image, 5, normalize=False)
writer.add_image('train/Groundtruth_label',
grid_image, iter_num)
if iter_num > 0 and iter_num % 200 == 0:
model.eval()
avg_metric = test_all_case(
model, args.root_path, test_list="val.txt", num_classes=2, patch_size=args.patch_size,
stride_xy=64, stride_z=64)
if avg_metric[:, 0].mean() > best_performance:
best_performance = avg_metric[:, 0].mean()
save_mode_path = os.path.join(snapshot_path,
'iter_{}_dice_{}.pth'.format(
iter_num, round(best_performance, 4)))
save_best = os.path.join(snapshot_path,
'{}_best_model.pth'.format(args.model))
torch.save(model.state_dict(), save_mode_path)
torch.save(model.state_dict(), save_best)
writer.add_scalar('info/val_dice_score',
avg_metric[0, 0], iter_num)
writer.add_scalar('info/val_hd95',
avg_metric[0, 1], iter_num)
logging.info(
'iteration %d : dice_score : %f hd95 : %f' % (iter_num, avg_metric[0, 0].mean(), avg_metric[0, 1].mean()))
model.train()
if iter_num % 3000 == 0:
save_mode_path = os.path.join(
snapshot_path, 'iter_' + str(iter_num) + '.pth')
torch.save(model.state_dict(), save_mode_path)
logging.info("save model to {}".format(save_mode_path))
if iter_num >= max_iterations:
break
if iter_num >= max_iterations:
iterator.close()
break
writer.close()
return "Training Finished!"
if __name__ == "__main__":
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
snapshot_path = "../model/{}_{}/{}".format(
args.exp, args.labeled_num, args.model)
if not os.path.exists(snapshot_path):
os.makedirs(snapshot_path)
if os.path.exists(snapshot_path + '/code'):
shutil.rmtree(snapshot_path + '/code')
shutil.copytree('.', snapshot_path + '/code',
shutil.ignore_patterns(['.git', '__pycache__']))
logging.basicConfig(filename=snapshot_path+"/log.txt", level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
train(args, snapshot_path)