forked from sjtug/SJTUThesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app_eq.tex
70 lines (68 loc) · 2.68 KB
/
app_eq.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
%# -*- coding: utf-8-unix -*-
% !TEX program = xelatex
% !TEX root = ../thesis.tex
% !TEX encoding = UTF-8 Unicode
%% app2.tex for SJTU Master Thesis
%% based on CASthesis
%% modified by [email protected]
%% version: 0.3a
%% Encoding: UTF-8
%% last update: Dec 5th, 2010
%%==================================================
\chapter{Maxwell Equations}
选择二维情况,有如下的偏振矢量:
\begin{subequations}
\begin{eqnarray}
{\bf E}&=&E_z(r,\theta)\hat{\bf z} \\
{\bf H}&=&H_r(r,\theta))\hat{ \bf r}+H_\theta(r,\theta)\hat{\bm
\theta}
\end{eqnarray}
\end{subequations}
对上式求旋度:
\begin{subequations}
\begin{eqnarray}
\nabla\times{\bf E}&=&\frac{1}{r}\frac{\partial E_z}{\partial\theta}{\hat{\bf r}}-\frac{\partial E_z}{\partial r}{\hat{\bm\theta}}\\
\nabla\times{\bf H}&=&\left[\frac{1}{r}\frac{\partial}{\partial
r}(rH_\theta)-\frac{1}{r}\frac{\partial
H_r}{\partial\theta}\right]{\hat{\bf z}}
\end{eqnarray}
\end{subequations}
因为在柱坐标系下,$\overline{\overline\mu}$是对角的,所以Maxwell方程组中电场$\bf E$的旋度:
\begin{subequations}
\begin{eqnarray}
&&\nabla\times{\bf E}=\mathbf{i}\omega{\bf B} \\
&&\frac{1}{r}\frac{\partial E_z}{\partial\theta}{\hat{\bf
r}}-\frac{\partial E_z}{\partial
r}{\hat{\bm\theta}}=\mathbf{i}\omega\mu_rH_r{\hat{\bf r}}+\mathbf{i}\omega\mu_\theta
H_\theta{\hat{\bm\theta}}
\end{eqnarray}
\end{subequations}
所以$\bf H$的各个分量可以写为:
\begin{subequations}
\begin{eqnarray}
H_r=\frac{1}{\mathbf{i}\omega\mu_r}\frac{1}{r}\frac{\partial
E_z}{\partial\theta } \\
H_\theta=-\frac{1}{\mathbf{i}\omega\mu_\theta}\frac{\partial E_z}{\partial r}
\end{eqnarray}
\end{subequations}
同样地,在柱坐标系下,$\overline{\overline\epsilon}$是对角的,所以Maxwell方程组中磁场$\bf H$的旋度:
\begin{subequations}
\begin{eqnarray}
&&\nabla\times{\bf H}=-\mathbf{i}\omega{\bf D}\\
&&\left[\frac{1}{r}\frac{\partial}{\partial
r}(rH_\theta)-\frac{1}{r}\frac{\partial
H_r}{\partial\theta}\right]{\hat{\bf
z}}=-\mathbf{i}\omega{\overline{\overline\epsilon}}{\bf
E}=-\mathbf{i}\omega\epsilon_zE_z{\hat{\bf z}} \\
&&\frac{1}{r}\frac{\partial}{\partial
r}(rH_\theta)-\frac{1}{r}\frac{\partial
H_r}{\partial\theta}=-\mathbf{i}\omega\epsilon_zE_z
\end{eqnarray}
\end{subequations}
由此我们可以得到关于$E_z$的波函数方程:
\begin{eqnarray}
\frac{1}{\mu_\theta\epsilon_z}\frac{1}{r}\frac{\partial}{\partial r}
\left(r\frac{\partial E_z}{\partial r}\right)+
\frac{1}{\mu_r\epsilon_z}\frac{1}{r^2}\frac{\partial^2E_z}{\partial\theta^2}
+\omega^2 E_z=0
\end{eqnarray}