forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Kconfig
1027 lines (801 loc) · 30.6 KB
/
Kconfig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-License-Identifier: GPL-2.0-only
#
# Traffic control configuration.
#
menuconfig NET_SCHED
bool "QoS and/or fair queueing"
select NET_SCH_FIFO
help
When the kernel has several packets to send out over a network
device, it has to decide which ones to send first, which ones to
delay, and which ones to drop. This is the job of the queueing
disciplines, several different algorithms for how to do this
"fairly" have been proposed.
If you say N here, you will get the standard packet scheduler, which
is a FIFO (first come, first served). If you say Y here, you will be
able to choose from among several alternative algorithms which can
then be attached to different network devices. This is useful for
example if some of your network devices are real time devices that
need a certain minimum data flow rate, or if you need to limit the
maximum data flow rate for traffic which matches specified criteria.
This code is considered to be experimental.
To administer these schedulers, you'll need the user-level utilities
from the package iproute2+tc at
<https://www.kernel.org/pub/linux/utils/net/iproute2/>. That package
also contains some documentation; for more, check out
<http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2>.
This Quality of Service (QoS) support will enable you to use
Differentiated Services (diffserv) and Resource Reservation Protocol
(RSVP) on your Linux router if you also say Y to the corresponding
classifiers below. Documentation and software is at
<http://diffserv.sourceforge.net/>.
If you say Y here and to "/proc file system" below, you will be able
to read status information about packet schedulers from the file
/proc/net/psched.
The available schedulers are listed in the following questions; you
can say Y to as many as you like. If unsure, say N now.
if NET_SCHED
comment "Queueing/Scheduling"
config NET_SCH_CBQ
tristate "Class Based Queueing (CBQ)"
help
Say Y here if you want to use the Class-Based Queueing (CBQ) packet
scheduling algorithm. This algorithm classifies the waiting packets
into a tree-like hierarchy of classes; the leaves of this tree are
in turn scheduled by separate algorithms.
See the top of <file:net/sched/sch_cbq.c> for more details.
CBQ is a commonly used scheduler, so if you're unsure, you should
say Y here. Then say Y to all the queueing algorithms below that you
want to use as leaf disciplines.
To compile this code as a module, choose M here: the
module will be called sch_cbq.
config NET_SCH_HTB
tristate "Hierarchical Token Bucket (HTB)"
help
Say Y here if you want to use the Hierarchical Token Buckets (HTB)
packet scheduling algorithm. See
<http://luxik.cdi.cz/~devik/qos/htb/> for complete manual and
in-depth articles.
HTB is very similar to CBQ regarding its goals however is has
different properties and different algorithm.
To compile this code as a module, choose M here: the
module will be called sch_htb.
config NET_SCH_HFSC
tristate "Hierarchical Fair Service Curve (HFSC)"
help
Say Y here if you want to use the Hierarchical Fair Service Curve
(HFSC) packet scheduling algorithm.
To compile this code as a module, choose M here: the
module will be called sch_hfsc.
config NET_SCH_ATM
tristate "ATM Virtual Circuits (ATM)"
depends on ATM
help
Say Y here if you want to use the ATM pseudo-scheduler. This
provides a framework for invoking classifiers, which in turn
select classes of this queuing discipline. Each class maps
the flow(s) it is handling to a given virtual circuit.
See the top of <file:net/sched/sch_atm.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_atm.
config NET_SCH_PRIO
tristate "Multi Band Priority Queueing (PRIO)"
help
Say Y here if you want to use an n-band priority queue packet
scheduler.
To compile this code as a module, choose M here: the
module will be called sch_prio.
config NET_SCH_MULTIQ
tristate "Hardware Multiqueue-aware Multi Band Queuing (MULTIQ)"
help
Say Y here if you want to use an n-band queue packet scheduler
to support devices that have multiple hardware transmit queues.
To compile this code as a module, choose M here: the
module will be called sch_multiq.
config NET_SCH_RED
tristate "Random Early Detection (RED)"
help
Say Y here if you want to use the Random Early Detection (RED)
packet scheduling algorithm.
See the top of <file:net/sched/sch_red.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_red.
config NET_SCH_SFB
tristate "Stochastic Fair Blue (SFB)"
help
Say Y here if you want to use the Stochastic Fair Blue (SFB)
packet scheduling algorithm.
See the top of <file:net/sched/sch_sfb.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_sfb.
config NET_SCH_SFQ
tristate "Stochastic Fairness Queueing (SFQ)"
help
Say Y here if you want to use the Stochastic Fairness Queueing (SFQ)
packet scheduling algorithm.
See the top of <file:net/sched/sch_sfq.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_sfq.
config NET_SCH_TEQL
tristate "True Link Equalizer (TEQL)"
help
Say Y here if you want to use the True Link Equalizer (TLE) packet
scheduling algorithm. This queueing discipline allows the combination
of several physical devices into one virtual device.
See the top of <file:net/sched/sch_teql.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_teql.
config NET_SCH_TBF
tristate "Token Bucket Filter (TBF)"
help
Say Y here if you want to use the Token Bucket Filter (TBF) packet
scheduling algorithm.
See the top of <file:net/sched/sch_tbf.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_tbf.
config NET_SCH_CBS
tristate "Credit Based Shaper (CBS)"
help
Say Y here if you want to use the Credit Based Shaper (CBS) packet
scheduling algorithm.
See the top of <file:net/sched/sch_cbs.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_cbs.
config NET_SCH_ETF
tristate "Earliest TxTime First (ETF)"
help
Say Y here if you want to use the Earliest TxTime First (ETF) packet
scheduling algorithm.
See the top of <file:net/sched/sch_etf.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_etf.
config NET_SCH_TAPRIO
tristate "Time Aware Priority (taprio) Scheduler"
help
Say Y here if you want to use the Time Aware Priority (taprio) packet
scheduling algorithm.
See the top of <file:net/sched/sch_taprio.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_taprio.
config NET_SCH_GRED
tristate "Generic Random Early Detection (GRED)"
help
Say Y here if you want to use the Generic Random Early Detection
(GRED) packet scheduling algorithm for some of your network devices
(see the top of <file:net/sched/sch_red.c> for details and
references about the algorithm).
To compile this code as a module, choose M here: the
module will be called sch_gred.
config NET_SCH_DSMARK
tristate "Differentiated Services marker (DSMARK)"
help
Say Y if you want to schedule packets according to the
Differentiated Services architecture proposed in RFC 2475.
Technical information on this method, with pointers to associated
RFCs, is available at <http://www.gta.ufrj.br/diffserv/>.
To compile this code as a module, choose M here: the
module will be called sch_dsmark.
config NET_SCH_NETEM
tristate "Network emulator (NETEM)"
help
Say Y if you want to emulate network delay, loss, and packet
re-ordering. This is often useful to simulate networks when
testing applications or protocols.
To compile this driver as a module, choose M here: the module
will be called sch_netem.
If unsure, say N.
config NET_SCH_DRR
tristate "Deficit Round Robin scheduler (DRR)"
help
Say Y here if you want to use the Deficit Round Robin (DRR) packet
scheduling algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_drr.
If unsure, say N.
config NET_SCH_MQPRIO
tristate "Multi-queue priority scheduler (MQPRIO)"
help
Say Y here if you want to use the Multi-queue Priority scheduler.
This scheduler allows QOS to be offloaded on NICs that have support
for offloading QOS schedulers.
To compile this driver as a module, choose M here: the module will
be called sch_mqprio.
If unsure, say N.
config NET_SCH_SKBPRIO
tristate "SKB priority queue scheduler (SKBPRIO)"
help
Say Y here if you want to use the SKB priority queue
scheduler. This schedules packets according to skb->priority,
which is useful for request packets in DoS mitigation systems such
as Gatekeeper.
To compile this driver as a module, choose M here: the module will
be called sch_skbprio.
If unsure, say N.
config NET_SCH_CHOKE
tristate "CHOose and Keep responsive flow scheduler (CHOKE)"
help
Say Y here if you want to use the CHOKe packet scheduler (CHOose
and Keep for responsive flows, CHOose and Kill for unresponsive
flows). This is a variation of RED which tries to penalize flows
that monopolize the queue.
To compile this code as a module, choose M here: the
module will be called sch_choke.
config NET_SCH_QFQ
tristate "Quick Fair Queueing scheduler (QFQ)"
help
Say Y here if you want to use the Quick Fair Queueing Scheduler (QFQ)
packet scheduling algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_qfq.
If unsure, say N.
config NET_SCH_CODEL
tristate "Controlled Delay AQM (CODEL)"
help
Say Y here if you want to use the Controlled Delay (CODEL)
packet scheduling algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_codel.
If unsure, say N.
config NET_SCH_FQ_CODEL
tristate "Fair Queue Controlled Delay AQM (FQ_CODEL)"
help
Say Y here if you want to use the FQ Controlled Delay (FQ_CODEL)
packet scheduling algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_fq_codel.
If unsure, say N.
config NET_SCH_CAKE
tristate "Common Applications Kept Enhanced (CAKE)"
help
Say Y here if you want to use the Common Applications Kept Enhanced
(CAKE) queue management algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_cake.
If unsure, say N.
config NET_SCH_FQ
tristate "Fair Queue"
help
Say Y here if you want to use the FQ packet scheduling algorithm.
FQ does flow separation, and is able to respect pacing requirements
set by TCP stack into sk->sk_pacing_rate (for localy generated
traffic)
To compile this driver as a module, choose M here: the module
will be called sch_fq.
If unsure, say N.
config NET_SCH_HHF
tristate "Heavy-Hitter Filter (HHF)"
help
Say Y here if you want to use the Heavy-Hitter Filter (HHF)
packet scheduling algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_hhf.
config NET_SCH_PIE
tristate "Proportional Integral controller Enhanced (PIE) scheduler"
help
Say Y here if you want to use the Proportional Integral controller
Enhanced scheduler packet scheduling algorithm.
For more information, please see https://tools.ietf.org/html/rfc8033
To compile this driver as a module, choose M here: the module
will be called sch_pie.
If unsure, say N.
config NET_SCH_FQ_PIE
depends on NET_SCH_PIE
tristate "Flow Queue Proportional Integral controller Enhanced (FQ-PIE)"
help
Say Y here if you want to use the Flow Queue Proportional Integral
controller Enhanced (FQ-PIE) packet scheduling algorithm.
For more information, please see https://tools.ietf.org/html/rfc8033
To compile this driver as a module, choose M here: the module
will be called sch_fq_pie.
If unsure, say N.
config NET_SCH_INGRESS
tristate "Ingress/classifier-action Qdisc"
depends on NET_CLS_ACT
select NET_INGRESS
select NET_EGRESS
help
Say Y here if you want to use classifiers for incoming and/or outgoing
packets. This qdisc doesn't do anything else besides running classifiers,
which can also have actions attached to them. In case of outgoing packets,
classifiers that this qdisc holds are executed in the transmit path
before real enqueuing to an egress qdisc happens.
If unsure, say Y.
To compile this code as a module, choose M here: the module will be
called sch_ingress with alias of sch_clsact.
config NET_SCH_PLUG
tristate "Plug network traffic until release (PLUG)"
help
This queuing discipline allows userspace to plug/unplug a network
output queue, using the netlink interface. When it receives an
enqueue command it inserts a plug into the outbound queue that
causes following packets to enqueue until a dequeue command arrives
over netlink, causing the plug to be removed and resuming the normal
packet flow.
This module also provides a generic "network output buffering"
functionality (aka output commit), wherein upon arrival of a dequeue
command, only packets up to the first plug are released for delivery.
The Remus HA project uses this module to enable speculative execution
of virtual machines by allowing the generated network output to be rolled
back if needed.
For more information, please refer to <http://wiki.xenproject.org/wiki/Remus>
Say Y here if you are using this kernel for Xen dom0 and
want to protect Xen guests with Remus.
To compile this code as a module, choose M here: the
module will be called sch_plug.
config NET_SCH_ETS
tristate "Enhanced transmission selection scheduler (ETS)"
help
The Enhanced Transmission Selection scheduler is a classful
queuing discipline that merges functionality of PRIO and DRR
qdiscs in one scheduler. ETS makes it easy to configure a set of
strict and bandwidth-sharing bands to implement the transmission
selection described in 802.1Qaz.
Say Y here if you want to use the ETS packet scheduling
algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_ets.
If unsure, say N.
menuconfig NET_SCH_DEFAULT
bool "Allow override default queue discipline"
help
Support for selection of default queuing discipline.
Nearly all users can safely say no here, and the default
of pfifo_fast will be used. Many distributions already set
the default value via /proc/sys/net/core/default_qdisc.
If unsure, say N.
if NET_SCH_DEFAULT
choice
prompt "Default queuing discipline"
default DEFAULT_PFIFO_FAST
help
Select the queueing discipline that will be used by default
for all network devices.
config DEFAULT_FQ
bool "Fair Queue" if NET_SCH_FQ
config DEFAULT_CODEL
bool "Controlled Delay" if NET_SCH_CODEL
config DEFAULT_FQ_CODEL
bool "Fair Queue Controlled Delay" if NET_SCH_FQ_CODEL
config DEFAULT_FQ_PIE
bool "Flow Queue Proportional Integral controller Enhanced" if NET_SCH_FQ_PIE
config DEFAULT_SFQ
bool "Stochastic Fair Queue" if NET_SCH_SFQ
config DEFAULT_PFIFO_FAST
bool "Priority FIFO Fast"
endchoice
config DEFAULT_NET_SCH
string
default "pfifo_fast" if DEFAULT_PFIFO_FAST
default "fq" if DEFAULT_FQ
default "fq_codel" if DEFAULT_FQ_CODEL
default "fq_pie" if DEFAULT_FQ_PIE
default "sfq" if DEFAULT_SFQ
default "pfifo_fast"
endif
comment "Classification"
config NET_CLS
bool
config NET_CLS_BASIC
tristate "Elementary classification (BASIC)"
select NET_CLS
help
Say Y here if you want to be able to classify packets using
only extended matches and actions.
To compile this code as a module, choose M here: the
module will be called cls_basic.
config NET_CLS_TCINDEX
tristate "Traffic-Control Index (TCINDEX)"
select NET_CLS
help
Say Y here if you want to be able to classify packets based on
traffic control indices. You will want this feature if you want
to implement Differentiated Services together with DSMARK.
To compile this code as a module, choose M here: the
module will be called cls_tcindex.
config NET_CLS_ROUTE4
tristate "Routing decision (ROUTE)"
depends on INET
select IP_ROUTE_CLASSID
select NET_CLS
help
If you say Y here, you will be able to classify packets
according to the route table entry they matched.
To compile this code as a module, choose M here: the
module will be called cls_route.
config NET_CLS_FW
tristate "Netfilter mark (FW)"
select NET_CLS
help
If you say Y here, you will be able to classify packets
according to netfilter/firewall marks.
To compile this code as a module, choose M here: the
module will be called cls_fw.
config NET_CLS_U32
tristate "Universal 32bit comparisons w/ hashing (U32)"
select NET_CLS
help
Say Y here to be able to classify packets using a universal
32bit pieces based comparison scheme.
To compile this code as a module, choose M here: the
module will be called cls_u32.
config CLS_U32_PERF
bool "Performance counters support"
depends on NET_CLS_U32
help
Say Y here to make u32 gather additional statistics useful for
fine tuning u32 classifiers.
config CLS_U32_MARK
bool "Netfilter marks support"
depends on NET_CLS_U32
help
Say Y here to be able to use netfilter marks as u32 key.
config NET_CLS_RSVP
tristate "IPv4 Resource Reservation Protocol (RSVP)"
select NET_CLS
help
The Resource Reservation Protocol (RSVP) permits end systems to
request a minimum and maximum data flow rate for a connection; this
is important for real time data such as streaming sound or video.
Say Y here if you want to be able to classify outgoing packets based
on their RSVP requests.
To compile this code as a module, choose M here: the
module will be called cls_rsvp.
config NET_CLS_RSVP6
tristate "IPv6 Resource Reservation Protocol (RSVP6)"
select NET_CLS
help
The Resource Reservation Protocol (RSVP) permits end systems to
request a minimum and maximum data flow rate for a connection; this
is important for real time data such as streaming sound or video.
Say Y here if you want to be able to classify outgoing packets based
on their RSVP requests and you are using the IPv6 protocol.
To compile this code as a module, choose M here: the
module will be called cls_rsvp6.
config NET_CLS_FLOW
tristate "Flow classifier"
select NET_CLS
help
If you say Y here, you will be able to classify packets based on
a configurable combination of packet keys. This is mostly useful
in combination with SFQ.
To compile this code as a module, choose M here: the
module will be called cls_flow.
config NET_CLS_CGROUP
tristate "Control Group Classifier"
select NET_CLS
select CGROUP_NET_CLASSID
depends on CGROUPS
help
Say Y here if you want to classify packets based on the control
cgroup of their process.
To compile this code as a module, choose M here: the
module will be called cls_cgroup.
config NET_CLS_BPF
tristate "BPF-based classifier"
select NET_CLS
help
If you say Y here, you will be able to classify packets based on
programmable BPF (JIT'ed) filters as an alternative to ematches.
To compile this code as a module, choose M here: the module will
be called cls_bpf.
config NET_CLS_FLOWER
tristate "Flower classifier"
select NET_CLS
help
If you say Y here, you will be able to classify packets based on
a configurable combination of packet keys and masks.
To compile this code as a module, choose M here: the module will
be called cls_flower.
config NET_CLS_MATCHALL
tristate "Match-all classifier"
select NET_CLS
help
If you say Y here, you will be able to classify packets based on
nothing. Every packet will match.
To compile this code as a module, choose M here: the module will
be called cls_matchall.
config NET_EMATCH
bool "Extended Matches"
select NET_CLS
help
Say Y here if you want to use extended matches on top of classifiers
and select the extended matches below.
Extended matches are small classification helpers not worth writing
a separate classifier for.
A recent version of the iproute2 package is required to use
extended matches.
config NET_EMATCH_STACK
int "Stack size"
depends on NET_EMATCH
default "32"
help
Size of the local stack variable used while evaluating the tree of
ematches. Limits the depth of the tree, i.e. the number of
encapsulated precedences. Every level requires 4 bytes of additional
stack space.
config NET_EMATCH_CMP
tristate "Simple packet data comparison"
depends on NET_EMATCH
help
Say Y here if you want to be able to classify packets based on
simple packet data comparisons for 8, 16, and 32bit values.
To compile this code as a module, choose M here: the
module will be called em_cmp.
config NET_EMATCH_NBYTE
tristate "Multi byte comparison"
depends on NET_EMATCH
help
Say Y here if you want to be able to classify packets based on
multiple byte comparisons mainly useful for IPv6 address comparisons.
To compile this code as a module, choose M here: the
module will be called em_nbyte.
config NET_EMATCH_U32
tristate "U32 key"
depends on NET_EMATCH
help
Say Y here if you want to be able to classify packets using
the famous u32 key in combination with logic relations.
To compile this code as a module, choose M here: the
module will be called em_u32.
config NET_EMATCH_META
tristate "Metadata"
depends on NET_EMATCH
help
Say Y here if you want to be able to classify packets based on
metadata such as load average, netfilter attributes, socket
attributes and routing decisions.
To compile this code as a module, choose M here: the
module will be called em_meta.
config NET_EMATCH_TEXT
tristate "Textsearch"
depends on NET_EMATCH
select TEXTSEARCH
select TEXTSEARCH_KMP
select TEXTSEARCH_BM
select TEXTSEARCH_FSM
help
Say Y here if you want to be able to classify packets based on
textsearch comparisons.
To compile this code as a module, choose M here: the
module will be called em_text.
config NET_EMATCH_CANID
tristate "CAN Identifier"
depends on NET_EMATCH && (CAN=y || CAN=m)
help
Say Y here if you want to be able to classify CAN frames based
on CAN Identifier.
To compile this code as a module, choose M here: the
module will be called em_canid.
config NET_EMATCH_IPSET
tristate "IPset"
depends on NET_EMATCH && IP_SET
help
Say Y here if you want to be able to classify packets based on
ipset membership.
To compile this code as a module, choose M here: the
module will be called em_ipset.
config NET_EMATCH_IPT
tristate "IPtables Matches"
depends on NET_EMATCH && NETFILTER && NETFILTER_XTABLES
help
Say Y here to be able to classify packets based on iptables
matches.
Current supported match is "policy" which allows packet classification
based on IPsec policy that was used during decapsulation
To compile this code as a module, choose M here: the
module will be called em_ipt.
config NET_CLS_ACT
bool "Actions"
select NET_CLS
help
Say Y here if you want to use traffic control actions. Actions
get attached to classifiers and are invoked after a successful
classification. They are used to overwrite the classification
result, instantly drop or redirect packets, etc.
A recent version of the iproute2 package is required to use
extended matches.
config NET_ACT_POLICE
tristate "Traffic Policing"
depends on NET_CLS_ACT
help
Say Y here if you want to do traffic policing, i.e. strict
bandwidth limiting. This action replaces the existing policing
module.
To compile this code as a module, choose M here: the
module will be called act_police.
config NET_ACT_GACT
tristate "Generic actions"
depends on NET_CLS_ACT
help
Say Y here to take generic actions such as dropping and
accepting packets.
To compile this code as a module, choose M here: the
module will be called act_gact.
config GACT_PROB
bool "Probability support"
depends on NET_ACT_GACT
help
Say Y here to use the generic action randomly or deterministically.
config NET_ACT_MIRRED
tristate "Redirecting and Mirroring"
depends on NET_CLS_ACT
help
Say Y here to allow packets to be mirrored or redirected to
other devices.
To compile this code as a module, choose M here: the
module will be called act_mirred.
config NET_ACT_SAMPLE
tristate "Traffic Sampling"
depends on NET_CLS_ACT
select PSAMPLE
help
Say Y here to allow packet sampling tc action. The packet sample
action consists of statistically choosing packets and sampling
them using the psample module.
To compile this code as a module, choose M here: the
module will be called act_sample.
config NET_ACT_IPT
tristate "IPtables targets"
depends on NET_CLS_ACT && NETFILTER && NETFILTER_XTABLES
help
Say Y here to be able to invoke iptables targets after successful
classification.
To compile this code as a module, choose M here: the
module will be called act_ipt.
config NET_ACT_NAT
tristate "Stateless NAT"
depends on NET_CLS_ACT
help
Say Y here to do stateless NAT on IPv4 packets. You should use
netfilter for NAT unless you know what you are doing.
To compile this code as a module, choose M here: the
module will be called act_nat.
config NET_ACT_PEDIT
tristate "Packet Editing"
depends on NET_CLS_ACT
help
Say Y here if you want to mangle the content of packets.
To compile this code as a module, choose M here: the
module will be called act_pedit.
config NET_ACT_SIMP
tristate "Simple Example (Debug)"
depends on NET_CLS_ACT
help
Say Y here to add a simple action for demonstration purposes.
It is meant as an example and for debugging purposes. It will
print a configured policy string followed by the packet count
to the console for every packet that passes by.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_simple.
config NET_ACT_SKBEDIT
tristate "SKB Editing"
depends on NET_CLS_ACT
help
Say Y here to change skb priority or queue_mapping settings.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_skbedit.
config NET_ACT_CSUM
tristate "Checksum Updating"
depends on NET_CLS_ACT && INET
select LIBCRC32C
help
Say Y here to update some common checksum after some direct
packet alterations.
To compile this code as a module, choose M here: the
module will be called act_csum.
config NET_ACT_MPLS
tristate "MPLS manipulation"
depends on NET_CLS_ACT
help
Say Y here to push or pop MPLS headers.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_mpls.
config NET_ACT_VLAN
tristate "Vlan manipulation"
depends on NET_CLS_ACT
help
Say Y here to push or pop vlan headers.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_vlan.
config NET_ACT_BPF
tristate "BPF based action"
depends on NET_CLS_ACT
help
Say Y here to execute BPF code on packets. The BPF code will decide
if the packet should be dropped or not.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_bpf.
config NET_ACT_CONNMARK
tristate "Netfilter Connection Mark Retriever"
depends on NET_CLS_ACT && NETFILTER
depends on NF_CONNTRACK && NF_CONNTRACK_MARK
help
Say Y here to allow retrieving of conn mark
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_connmark.
config NET_ACT_CTINFO
tristate "Netfilter Connection Mark Actions"
depends on NET_CLS_ACT && NETFILTER
depends on NF_CONNTRACK && NF_CONNTRACK_MARK
help
Say Y here to allow transfer of a connmark stored information.
Current actions transfer connmark stored DSCP into
ipv4/v6 diffserv and/or to transfer connmark to packet
mark. Both are useful for restoring egress based marks
back onto ingress connections for qdisc priority mapping
purposes.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_ctinfo.
config NET_ACT_SKBMOD
tristate "skb data modification action"
depends on NET_CLS_ACT
help
Say Y here to allow modification of skb data
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_skbmod.
config NET_ACT_IFE
tristate "Inter-FE action based on IETF ForCES InterFE LFB"
depends on NET_CLS_ACT
select NET_IFE
help
Say Y here to allow for sourcing and terminating metadata
For details refer to netdev01 paper:
"Distributing Linux Traffic Control Classifier-Action Subsystem"
Authors: Jamal Hadi Salim and Damascene M. Joachimpillai
To compile this code as a module, choose M here: the
module will be called act_ife.
config NET_ACT_TUNNEL_KEY
tristate "IP tunnel metadata manipulation"
depends on NET_CLS_ACT
help
Say Y here to set/release ip tunnel metadata.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_tunnel_key.
config NET_ACT_CT
tristate "connection tracking tc action"
depends on NET_CLS_ACT && NF_CONNTRACK && NF_NAT && NF_FLOW_TABLE
help
Say Y here to allow sending the packets to conntrack module.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_ct.
config NET_ACT_GATE
tristate "Frame gate entry list control tc action"
depends on NET_CLS_ACT
help
Say Y here to allow to control the ingress flow to be passed at
specific time slot and be dropped at other specific time slot by
the gate entry list.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_gate.
config NET_IFE_SKBMARK