-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain-erc-text.py
43 lines (32 loc) · 1.56 KB
/
train-erc-text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""Main training script"""
import logging
import datetime
import yaml
import subprocess
from tqdm import tqdm
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
)
def main(DATASET: str, BATCH_SIZE: int, model_checkpoint: str, speaker_mode: str,
num_past_utterances: int, num_future_utterances: int, SEEDS: list, **kwargs):
"""Call `train-erc-text-hp.py and `train-erc-text-full.py`"""
logging.info(f"automatic hyperparameter tuning with speaker_mode: {speaker_mode}, "
f"num_past_utterances: {num_past_utterances}, "
f"num_future_utterances: {num_future_utterances}")
CURRENT_TIME = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
SEED = 42 # This seed is only for the hyperparameter tuning.
OUTPUT_DIR = f"results/{DATASET}/{model_checkpoint}/SEEDS/{CURRENT_TIME}-"\
f"speaker_mode-{speaker_mode}-num_past_utterances-{num_past_utterances}-"\
f"num_future_utterances-{num_future_utterances}-batch_size-{BATCH_SIZE}-seed-{SEED}"
subprocess.call(
["python3", "train-erc-text-hp.py", "--OUTPUT-DIR", OUTPUT_DIR])
for SEED in tqdm(SEEDS):
subprocess.call(["python3", "train-erc-text-full.py",
"--OUTPUT-DIR", OUTPUT_DIR, "--SEED", str(SEED)])
if __name__ == "__main__":
with open('./train-erc-text.yaml', 'r') as stream:
args = yaml.load(stream)
logging.info(f"arguments given to {__file__}: {args}")
main(**args)