-
Notifications
You must be signed in to change notification settings - Fork 11
/
evaluation.py
147 lines (120 loc) · 5.34 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import logging
import math
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from models import Model
from data.dataset import ResponseSelectionDataset
from models.utils.checkpointing import load_checkpoint
from models.utils.scorer import calculate_candidates_ranking, logits_mrr, \
logits_recall_at_k, precision_at_one, mean_average_precision
class Evaluation(object):
def __init__(self, hparams, model=None):
self.hparams = hparams
self.model = model
self._logger = logging.getLogger(__name__)
self.device = (torch.device("cuda", self.hparams.gpu_ids[0])
if self.hparams.gpu_ids[0] >= 0 else torch.device("cpu"))
self.split = hparams.evaluate_data_type
print("Evaluation Split :", self.split)
do_valid, do_test = False, False
if self.split == "dev":
do_valid = True
else:
do_test = True
self._build_dataloader(do_valid=do_valid, do_test=do_test)
self._dataloader = self.valid_dataloader if self.split == 'dev' else self.test_dataloader
if model is None:
print("No pre-defined model!")
self._build_model()
def _build_dataloader(self, do_valid=False, do_test=False):
if do_valid:
self.valid_dataset = ResponseSelectionDataset(
self.hparams,
split="dev",
)
self.valid_dataloader = DataLoader(
self.valid_dataset,
batch_size=self.hparams.eval_batch_size,
num_workers=self.hparams.cpu_workers,
drop_last=False,
)
if do_test:
self.test_dataset = ResponseSelectionDataset(
self.hparams,
split="test",
)
self.test_dataloader = DataLoader(
self.test_dataset,
batch_size=self.hparams.eval_batch_size,
num_workers=self.hparams.cpu_workers,
drop_last=False,
)
def _build_model(self):
self.model = Model(self.hparams)
self.model = self.model.to(self.device)
# Use Multi-GPUs
if -1 not in self.hparams.gpu_ids and len(self.hparams.gpu_ids) > 1:
self.model = nn.DataParallel(self.model, self.hparams.gpu_ids)
def run_evaluate(self, evaluation_path):
self._logger.info("Evaluation")
model_state_dict, optimizer_state_dict = load_checkpoint(evaluation_path)
print(evaluation_path)
if isinstance(self.model, nn.DataParallel):
self.model.module.load_state_dict(model_state_dict)
else:
self.model.load_state_dict(model_state_dict)
k_list = self.hparams.recall_k_list
total_mrr, total_prec_at_one, total_map = 0, 0, 0
total_examples, total_correct = 0, 0
self.model.eval()
with torch.no_grad():
for batch_idx, batch in enumerate(tqdm(self._dataloader)):
buffer_batch = batch.copy()
for task_key in batch:
for key in buffer_batch[task_key]:
buffer_batch[task_key][key] = buffer_batch[task_key][key].to(self.device)
# for key in buffer_batch["res_sel"]:
# buffer_batch["res_sel"][key] = buffer_batch["res_sel"][key].to(self.device)
logits, loss = self.model(buffer_batch)
pred = torch.sigmoid(logits).to("cpu").tolist()
rank_by_pred, pos_index, stack_scores = \
calculate_candidates_ranking(np.array(pred), np.array(buffer_batch["res_sel"]["label"].to("cpu").tolist()),
self.hparams.evaluate_candidates_num)
num_correct = logits_recall_at_k(pos_index, k_list)
if self.hparams.task_name in ["douban", "kakao"]:
total_prec_at_one += precision_at_one(rank_by_pred)
total_map += mean_average_precision(pos_index)
for pred in rank_by_pred:
if sum(pred) == 0:
total_examples -= 1
total_mrr += logits_mrr(pos_index)
total_correct = np.add(total_correct, num_correct)
total_examples += math.ceil(buffer_batch["res_sel"]["label"].size()[0] / self.hparams.evaluate_candidates_num)
recall_result = ""
if (batch_idx + 1) % self.hparams.evaluate_print_step == 0:
for i in range(len(k_list)):
recall_result += "Recall@%s : " % k_list[i] + "%.2f%% | " % ((total_correct[i] / total_examples) * 100)
else:
print("%d[th] | %s | MRR : %.3f | P@1 : %.3f | MAP : %.3f" %
(batch_idx + 1, recall_result, float(total_mrr / total_examples),
float(total_prec_at_one / total_examples), float(total_map / total_examples)))
self._logger.info("%d[th] | %s | MRR : %.3f | P@1 : %.3f | MAP : %.3f" %
(batch_idx + 1, recall_result, float(total_mrr / total_examples),
float(total_prec_at_one / total_examples), float(total_map / total_examples)))
avg_mrr = float(total_mrr / total_examples)
avg_prec_at_one = float(total_prec_at_one / total_examples)
avg_map = float(total_map / total_examples)
recall_result = ""
for i in range(len(k_list)):
recall_result += "Recall@%s : " % k_list[i] + "%.2f%% | " % ((total_correct[i] / total_examples) * 100)
print(recall_result)
print("MRR: %.4f" % avg_mrr)
print("P@1: %.4f" % avg_prec_at_one)
print("MAP: %.4f" % avg_map)
self._logger.info(recall_result)
self._logger.info("MRR: %.4f" % avg_mrr)
self._logger.info("P@1: %.4f" % avg_prec_at_one)
self._logger.info("MAP: %.4f" % avg_map)