forked from facebookresearch/ParlAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_multigpu.py
138 lines (124 loc) · 3.97 KB
/
test_multigpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import parlai.utils.testing as testing_utils
MODEL_OPTS = {
'n_layers': 4,
'embedding_size': 16,
'ffn_size': 32,
'n_heads': 2,
'num_epochs': 0.1,
'batchsize': 32,
'truncate': 8,
}
@testing_utils.skipUnlessGPU
class TestModelParallel(unittest.TestCase):
def test_polyencoder(self):
testing_utils.train_model(
{
'task': 'integration_tests',
'model': 'transformer/polyencoder',
'model_parallel': True,
'candidates': 'batch',
'poly_n_codes': 4,
**MODEL_OPTS,
}
)
with self.assertRaises(RuntimeError):
testing_utils.train_model(
{
'task': 'integration_tests',
'model': 'transformer/polyencoder',
'data_parallel': True,
'model_parallel': True,
'candidates': 'batch',
'poly_n_codes': 4,
**MODEL_OPTS,
}
)
def test_ranker(self):
testing_utils.train_model(
{
'task': 'integration_tests',
'model': 'transformer/ranker',
'candidates': 'batch',
'model_parallel': True,
**MODEL_OPTS,
}
)
with self.assertRaises(RuntimeError):
testing_utils.train_model(
{
'task': 'integration_tests',
'model': 'transformer/ranker',
'data_parallel': True,
'model_parallel': True,
'candidates': 'batch',
**MODEL_OPTS,
}
)
def test_classifier(self):
testing_utils.train_model(
{
'task': 'integration_tests:classifier',
'classes': ['one', 'zero'],
'model': 'transformer/classifier',
'model_parallel': True,
**MODEL_OPTS,
}
)
with self.assertRaises(RuntimeError):
testing_utils.train_model(
{
'task': 'integration_tests:classifier',
'classes': ['one', 'zero'],
'model': 'transformer/classifier',
'data_parallel': True,
'model_parallel': True,
**MODEL_OPTS,
}
)
def test_transformer_generator(self):
testing_utils.train_model(
{
'task': 'integration_tests',
'model': 'transformer/generator',
'model_parallel': True,
**MODEL_OPTS,
}
)
@testing_utils.skipUnlessGPU
class TestDataParallel(unittest.TestCase):
def test_polyencoder(self):
testing_utils.train_model(
{
'task': 'integration_tests',
'model': 'transformer/polyencoder',
'candidates': 'batch',
'poly_n_codes': 4,
'data_parallel': True,
**MODEL_OPTS,
}
)
def test_ranker(self):
testing_utils.train_model(
{
'task': 'integration_tests',
'model': 'transformer/ranker',
'candidates': 'batch',
'data_parallel': True,
**MODEL_OPTS,
}
)
def test_classifier(self):
testing_utils.train_model(
{
'task': 'integration_tests:classifier',
'classes': ['one', 'zero'],
'data_parallel': True,
'model': 'transformer/classifier',
**MODEL_OPTS,
}
)