forked from bristolcrypto/SPDZ-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
allocator.py
663 lines (591 loc) · 26.9 KB
/
allocator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
# (C) 2017 University of Bristol. See License.txt
import itertools, time
from collections import defaultdict, deque
from Compiler.exceptions import *
from Compiler.config import *
from Compiler.instructions import *
from Compiler.instructions_base import *
from Compiler.util import *
import Compiler.graph
import Compiler.program
import heapq, itertools
import operator
import sys
class StraightlineAllocator:
"""Allocate variables in a straightline program using n registers.
It is based on the precondition that every register is only defined once."""
def __init__(self, n):
self.alloc = {}
self.usage = Compiler.program.RegType.create_dict(lambda: 0)
self.defined = {}
self.dealloc = set()
self.n = n
def alloc_reg(self, reg, free):
base = reg.vectorbase
if base in self.alloc:
# already allocated
return
reg_type = reg.reg_type
size = base.size
if free[reg_type, size]:
res = free[reg_type, size].pop()
else:
if self.usage[reg_type] < self.n:
res = self.usage[reg_type]
self.usage[reg_type] += size
else:
raise RegisterOverflowError()
self.alloc[base] = res
if base.vector:
for i,r in enumerate(base.vector):
r.i = self.alloc[base] + i
else:
base.i = self.alloc[base]
def dealloc_reg(self, reg, inst, free):
self.dealloc.add(reg)
base = reg.vectorbase
if base.vector and not inst.is_vec():
for i in base.vector:
if i not in self.dealloc:
# not all vector elements ready for deallocation
return
free[reg.reg_type, base.size].add(self.alloc[base])
if inst.is_vec() and base.vector:
for i in base.vector:
self.defined[i] = inst
else:
self.defined[reg] = inst
def process(self, program, alloc_pool):
for k,i in enumerate(reversed(program)):
unused_regs = []
for j in i.get_def():
if j.vectorbase in self.alloc:
if j in self.defined:
raise CompilerError("Double write on register %s " \
"assigned by '%s' in %s" % \
(j,i,format_trace(i.caller)))
else:
# unused register
self.alloc_reg(j, alloc_pool)
unused_regs.append(j)
if unused_regs and len(unused_regs) == len(i.get_def()):
# only report if all assigned registers are unused
print "Register(s) %s never used, assigned by '%s' in %s" % \
(unused_regs,i,format_trace(i.caller))
for j in i.get_used():
self.alloc_reg(j, alloc_pool)
for j in i.get_def():
self.dealloc_reg(j, i, alloc_pool)
if k % 1000000 == 0 and k > 0:
print "Allocated registers for %d instructions at" % k, time.asctime()
# print "Successfully allocated registers"
# print "modp usage: %d clear, %d secret" % \
# (self.usage[Compiler.program.RegType.ClearModp], self.usage[Compiler.program.RegType.SecretModp])
# print "GF2N usage: %d clear, %d secret" % \
# (self.usage[Compiler.program.RegType.ClearGF2N], self.usage[Compiler.program.RegType.SecretGF2N])
return self.usage
def determine_scope(block, options):
last_def = defaultdict(lambda: -1)
used_from_scope = set()
def find_in_scope(reg, scope):
if scope is None:
return False
elif reg in scope.defined_registers:
return True
else:
return find_in_scope(reg, scope.scope)
def read(reg, n):
if last_def[reg] == -1:
if find_in_scope(reg, block.scope):
used_from_scope.add(reg)
reg.can_eliminate = False
else:
print 'Warning: read before write at register', reg
print '\tline %d: %s' % (n, instr)
print '\tinstruction trace: %s' % format_trace(instr.caller, '\t\t')
print '\tregister trace: %s' % format_trace(reg.caller, '\t\t')
if options.stop:
sys.exit(1)
def write(reg, n):
if last_def[reg] != -1:
print 'Warning: double write at register', reg
print '\tline %d: %s' % (n, instr)
print '\ttrace: %s' % format_trace(instr.caller, '\t\t')
if options.stop:
sys.exit(1)
last_def[reg] = n
for n,instr in enumerate(block.instructions):
outputs,inputs = instr.get_def(), instr.get_used()
for reg in inputs:
if reg.vector and instr.is_vec():
for i in reg.vector:
read(i, n)
else:
read(reg, n)
for reg in outputs:
if reg.vector and instr.is_vec():
for i in reg.vector:
write(i, n)
else:
write(reg, n)
block.used_from_scope = used_from_scope
block.defined_registers = set(last_def.iterkeys())
class Merger:
def __init__(self, block, options):
self.block = block
self.instructions = block.instructions
self.options = options
if options.max_parallel_open:
self.max_parallel_open = int(options.max_parallel_open)
else:
self.max_parallel_open = float('inf')
self.dependency_graph()
def do_merge(self, merges_iter):
""" Merge an iterable of nodes in G, returning the number of merged
instructions and the index of the merged instruction. """
instructions = self.instructions
mergecount = 0
try:
n = next(merges_iter)
except StopIteration:
return mergecount, None
def expand_vector_args(inst):
new_args = []
for arg in inst.args:
if inst.is_vec():
arg.create_vector_elements()
for reg in arg:
new_args.append(reg)
else:
new_args.append(arg)
return new_args
for i in merges_iter:
if isinstance(instructions[n], startinput_class):
instructions[n].args[1] += instructions[i].args[1]
elif isinstance(instructions[n], (stopinput, gstopinput)):
if instructions[n].get_size() != instructions[i].get_size():
raise NotImplemented()
else:
instructions[n].args += instructions[i].args[1:]
else:
if instructions[n].get_size() != instructions[i].get_size():
# merge as non-vector instruction
instructions[n].args = expand_vector_args(instructions[n]) + \
expand_vector_args(instructions[i])
if instructions[n].is_vec():
instructions[n].size = 1
else:
instructions[n].args += instructions[i].args
# join arg_formats if not special iterators
# if not isinstance(instructions[n].arg_format, (itertools.repeat, itertools.cycle)) and \
# not isinstance(instructions[i].arg_format, (itertools.repeat, itertools.cycle)):
# instructions[n].arg_format += instructions[i].arg_format
instructions[i] = None
self.merge_nodes(n, i)
mergecount += 1
return mergecount, n
def compute_max_depths(self, depth_of):
""" Compute the maximum 'depth' at which every instruction can be placed.
This is the minimum depth of any merge_node succeeding an instruction.
Similar to DAG shortest paths algorithm. Traverses the graph in reverse
topological order, updating the max depth of each node's predecessors.
"""
G = self.G
merge_nodes_set = self.open_nodes
top_order = Compiler.graph.topological_sort(G)
max_depth_of = [None] * len(G)
max_depth = max(depth_of)
for i in range(len(max_depth_of)):
if i in merge_nodes_set:
max_depth_of[i] = depth_of[i] - 1
else:
max_depth_of[i] = max_depth
for u in reversed(top_order):
for v in G.pred[u]:
if v not in merge_nodes_set:
max_depth_of[v] = min(max_depth_of[u], max_depth_of[v])
return max_depth_of
def merge_inputs(self):
merges = defaultdict(list)
remaining_input_nodes = []
def do_merge(nodes):
if len(nodes) > 1000:
print 'Merging %d inputs...' % len(nodes)
self.do_merge(iter(nodes))
for n in self.input_nodes:
inst = self.instructions[n]
merge = merges[inst.args[0],inst.__class__]
if len(merge) == 0:
remaining_input_nodes.append(n)
merge.append(n)
if len(merge) >= self.max_parallel_open:
do_merge(merge)
merge[:] = []
for merge in merges.itervalues():
if merge:
do_merge(merge)
self.input_nodes = remaining_input_nodes
def compute_preorder(self, merges, rev_depth_of):
# find flexible nodes that can be on several levels
# and find sources on level 0
G = self.G
merge_nodes_set = self.open_nodes
depth_of = self.depths
instructions = self.instructions
flex_nodes = defaultdict(dict)
starters = []
for n in xrange(len(G)):
if n not in merge_nodes_set and \
depth_of[n] != rev_depth_of[n] and G[n] and G.get_attr(n,'start') == -1 and not isinstance(instructions[n], AsymmetricCommunicationInstruction):
#print n, depth_of[n], rev_depth_of[n]
flex_nodes[depth_of[n]].setdefault(rev_depth_of[n], set()).add(n)
elif len(G.pred[n]) == 0 and \
not isinstance(self.instructions[n], RawInputInstruction):
starters.append(n)
if n % 10000000 == 0 and n > 0:
print "Processed %d nodes at" % n, time.asctime()
inputs = defaultdict(list)
for node in self.input_nodes:
player = self.instructions[node].args[0]
inputs[player].append(node)
first_inputs = [l[0] for l in inputs.itervalues()]
other_inputs = []
i = 0
while True:
i += 1
found = False
for l in inputs.itervalues():
if i < len(l):
other_inputs.append(l[i])
found = True
if not found:
break
other_inputs.reverse()
preorder = []
# magical preorder for topological search
max_depth = max(merges)
if max_depth > 10000:
print "Computing pre-ordering ..."
for i in xrange(max_depth, 0, -1):
preorder.append(G.get_attr(merges[i], 'stop'))
for j in flex_nodes[i-1].itervalues():
preorder.extend(j)
preorder.extend(flex_nodes[0].get(i, []))
preorder.append(merges[i])
if i % 100000 == 0 and i > 0:
print "Done level %d at" % i, time.asctime()
preorder.extend(other_inputs)
preorder.extend(starters)
preorder.extend(first_inputs)
if max_depth > 10000:
print "Done at", time.asctime()
return preorder
def compute_continuous_preorder(self, merges, rev_depth_of):
print 'Computing pre-ordering for continuous computation...'
preorder = []
sources_for = defaultdict(list)
stops_in = defaultdict(list)
startinputs = []
stopinputs = []
for source in self.sources:
sources_for[rev_depth_of[source]].append(source)
for merge in merges.itervalues():
stop = self.G.get_attr(merge, 'stop')
stops_in[rev_depth_of[stop]].append(stop)
for node in self.input_nodes:
if isinstance(self.instructions[node], startinput_class):
startinputs.append(node)
else:
stopinputs.append(node)
max_round = max(rev_depth_of)
for i in xrange(max_round, 0, -1):
preorder.extend(reversed(stops_in[i]))
preorder.extend(reversed(sources_for[i]))
# inputs at the beginning
preorder.extend(reversed(stopinputs))
preorder.extend(reversed(sources_for[0]))
preorder.extend(reversed(startinputs))
return preorder
def longest_paths_merge(self, instruction_type=startopen_class,
merge_stopopens=True):
""" Attempt to merge instructions of type instruction_type (which are given in
merge_nodes) using longest paths algorithm.
Returns the no. of rounds of communication required after merging (assuming 1 round/instruction).
If merge_stopopens is True, will also merge associated stop_open instructions.
If reorder_between_opens is True, will attempt to place non-opens between start/stop opens.
Doesn't use networkx.
"""
G = self.G
instructions = self.instructions
merge_nodes = self.open_nodes
depths = self.depths
if instruction_type is not startopen_class and merge_stopopens:
raise CompilerError('Cannot merge stopopens whilst merging %s instructions' % instruction_type)
if not merge_nodes and not self.input_nodes:
return 0
# merge opens at same depth
merges = defaultdict(list)
for node in merge_nodes:
merges[depths[node]].append(node)
# after merging, the first element in merges[i] remains for each depth i,
# all others are removed from instructions and G
last_nodes = [None, None]
for i in sorted(merges):
merge = merges[i]
if len(merge) > 1000:
print 'Merging %d opens in round %d/%d' % (len(merge), i, len(merges))
nodes = defaultdict(lambda: None)
for b in (False, True):
my_merge = (m for m in merge if instructions[m] is not None and instructions[m].is_gf2n() is b)
if merge_stopopens:
my_stopopen = [G.get_attr(m, 'stop') for m in merge if instructions[m] is not None and instructions[m].is_gf2n() is b]
mc, nodes[0,b] = self.do_merge(iter(my_merge))
if merge_stopopens:
mc, nodes[1,b] = self.do_merge(iter(my_stopopen))
# add edges to retain order of gf2n/modp start/stop opens
for j in (0,1):
node2 = nodes[j,True]
nodep = nodes[j,False]
if nodep is not None and node2 is not None:
G.add_edge(nodep, node2)
# add edge to retain order of opens over rounds
if last_nodes[j] is not None:
G.add_edge(last_nodes[j], node2 if nodep is None else nodep)
last_nodes[j] = nodep if node2 is None else node2
merges[i] = last_nodes[0]
self.merge_inputs()
# compute preorder for topological sort
if merge_stopopens and self.options.reorder_between_opens:
if self.options.continuous or not merge_nodes:
rev_depths = self.compute_max_depths(self.real_depths)
preorder = self.compute_continuous_preorder(merges, rev_depths)
else:
rev_depths = self.compute_max_depths(self.depths)
preorder = self.compute_preorder(merges, rev_depths)
else:
preorder = None
if len(instructions) > 100000:
print "Topological sort ..."
order = Compiler.graph.topological_sort(G, preorder)
instructions[:] = [instructions[i] for i in order if instructions[i] is not None]
if len(instructions) > 100000:
print "Done at", time.asctime()
return len(merges)
def dependency_graph(self, merge_class=startopen_class):
""" Create the program dependency graph. """
block = self.block
options = self.options
open_nodes = set()
self.open_nodes = open_nodes
self.input_nodes = []
colordict = defaultdict(lambda: 'gray', startopen='red', stopopen='red',\
ldi='lightblue', ldm='lightblue', stm='blue',\
mov='yellow', mulm='orange', mulc='orange',\
triple='green', square='green', bit='green',\
asm_input='lightgreen')
G = Compiler.graph.SparseDiGraph(len(block.instructions))
self.G = G
reg_nodes = {}
last_def = defaultdict(lambda: -1)
last_mem_write = []
last_mem_read = []
warned_about_mem = []
last_mem_write_of = defaultdict(list)
last_mem_read_of = defaultdict(list)
last_print_str = None
last = defaultdict(lambda: defaultdict(lambda: None))
last_open = deque()
depths = [0] * len(block.instructions)
self.depths = depths
parallel_open = defaultdict(lambda: 0)
next_available_depth = {}
self.sources = []
self.real_depths = [0] * len(block.instructions)
def add_edge(i, j):
from_merge = isinstance(block.instructions[i], merge_class)
to_merge = isinstance(block.instructions[j], merge_class)
G.add_edge(i, j)
is_source = G.get_attr(i, 'is_source') and G.get_attr(j, 'is_source') and not from_merge
G.set_attr(j, 'is_source', is_source)
for d in (self.depths, self.real_depths):
if d[j] < d[i]:
d[j] = d[i]
def read(reg, n):
if last_def[reg] != -1:
add_edge(last_def[reg], n)
def write(reg, n):
last_def[reg] = n
def handle_mem_access(addr, reg_type, last_access_this_kind,
last_access_other_kind):
this = last_access_this_kind[addr,reg_type]
other = last_access_other_kind[addr,reg_type]
if this and other:
if this[-1] < other[0]:
del this[:]
this.append(n)
for inst in other:
add_edge(inst, n)
def mem_access(n, instr, last_access_this_kind, last_access_other_kind):
addr = instr.args[1]
reg_type = instr.args[0].reg_type
if isinstance(addr, int):
for i in range(min(instr.get_size(), 100)):
addr_i = addr + i
handle_mem_access(addr_i, reg_type, last_access_this_kind,
last_access_other_kind)
if not warned_about_mem and (instr.get_size() > 100):
print 'WARNING: Order of memory instructions ' \
'not preserved due to long vector, errors possible'
warned_about_mem.append(True)
else:
handle_mem_access(addr, reg_type, last_access_this_kind,
last_access_other_kind)
if not warned_about_mem and not isinstance(instr, DirectMemoryInstruction):
print 'WARNING: Order of memory instructions ' \
'not preserved, errors possible'
# hack
warned_about_mem.append(True)
def keep_order(instr, n, t, arg_index=None):
if arg_index is None:
player = None
else:
player = instr.args[arg_index]
if last[t][player] is not None:
add_edge(last[t][player], n)
last[t][player] = n
for n,instr in enumerate(block.instructions):
outputs,inputs = instr.get_def(), instr.get_used()
G.add_node(n, is_source=True)
# if options.debug:
# col = colordict[instr.__class__.__name__]
# G.add_node(n, color=col, label=str(instr))
for reg in inputs:
if reg.vector and instr.is_vec():
for i in reg.vector:
read(i, n)
else:
read(reg, n)
for reg in outputs:
if reg.vector and instr.is_vec():
for i in reg.vector:
write(i, n)
else:
write(reg, n)
if isinstance(instr, merge_class):
open_nodes.add(n)
last_open.append(n)
G.add_node(n, merges=[])
# the following must happen after adding the edge
self.real_depths[n] += 1
depth = depths[n] + 1
if int(options.max_parallel_open):
skipped_depths = set()
while parallel_open[depth] >= int(options.max_parallel_open):
skipped_depths.add(depth)
depth = next_available_depth.get(depth, depth + 1)
for d in skipped_depths:
next_available_depth[d] = depth
parallel_open[depth] += len(instr.args) * instr.get_size()
depths[n] = depth
if isinstance(instr, stopopen_class):
startopen = last_open.popleft()
add_edge(startopen, n)
G.set_attr(startopen, 'stop', n)
G.set_attr(n, 'start', last_open)
G.add_node(n, merges=[])
if isinstance(instr, ReadMemoryInstruction):
if options.preserve_mem_order:
if last_mem_write and last_mem_read and last_mem_write[-1] > last_mem_read[-1]:
last_mem_read[:] = []
last_mem_read.append(n)
for i in last_mem_write:
add_edge(i, n)
else:
mem_access(n, instr, last_mem_read_of, last_mem_write_of)
elif isinstance(instr, WriteMemoryInstruction):
if options.preserve_mem_order:
if last_mem_write and last_mem_read and last_mem_write[-1] < last_mem_read[-1]:
last_mem_write[:] = []
last_mem_write.append(n)
for i in last_mem_read:
add_edge(i, n)
else:
mem_access(n, instr, last_mem_write_of, last_mem_read_of)
# keep I/O instructions in order
elif isinstance(instr, IOInstruction):
if last_print_str is not None:
add_edge(last_print_str, n)
last_print_str = n
elif isinstance(instr, PublicFileIOInstruction):
keep_order(instr, n, instr.__class__)
elif isinstance(instr, RawInputInstruction):
keep_order(instr, n, instr.__class__, 0)
self.input_nodes.append(n)
G.add_node(n, merges=[])
player = instr.args[0]
if isinstance(instr, stopinput):
add_edge(last[startinput_class][player], n)
elif isinstance(instr, gstopinput):
add_edge(last[gstartinput][player], n)
elif isinstance(instr, startprivateoutput_class):
keep_order(instr, n, startprivateoutput_class, 2)
elif isinstance(instr, stopprivateoutput_class):
keep_order(instr, n, stopprivateoutput_class, 1)
elif isinstance(instr, prep_class):
keep_order(instr, n, instr.args[0])
elif isinstance(instr, StackInstruction):
keep_order(instr, n, StackInstruction)
if not G.pred[n]:
self.sources.append(n)
if n % 100000 == 0 and n > 0:
print "Processed dependency of %d/%d instructions at" % \
(n, len(block.instructions)), time.asctime()
if len(open_nodes) > 1000:
print "Program has %d %s instructions" % (len(open_nodes), merge_class)
def merge_nodes(self, i, j):
""" Merge node j into i, removing node j """
G = self.G
if j in G[i]:
G.remove_edge(i, j)
if i in G[j]:
G.remove_edge(j, i)
G.add_edges_from(zip(itertools.cycle([i]), G[j], [G.weights[(j,k)] for k in G[j]]))
G.add_edges_from(zip(G.pred[j], itertools.cycle([i]), [G.weights[(k,j)] for k in G.pred[j]]))
G.get_attr(i, 'merges').append(j)
G.remove_node(j)
def eliminate_dead_code(self):
instructions = self.instructions
G = self.G
merge_nodes = self.open_nodes
count = 0
open_count = 0
for i,inst in zip(xrange(len(instructions) - 1, -1, -1), reversed(instructions)):
# remove if instruction has result that isn't used
unused_result = not G.degree(i) and len(inst.get_def()) \
and reduce(operator.and_, (reg.can_eliminate for reg in inst.get_def())) \
and not isinstance(inst, (DoNotEliminateInstruction))
stop_node = G.get_attr(i, 'stop')
unused_startopen = stop_node != -1 and instructions[stop_node] is None
if unused_result or unused_startopen:
G.remove_node(i)
merge_nodes.discard(i)
instructions[i] = None
count += 1
if unused_startopen:
open_count += len(inst.args)
if count > 0:
print 'Eliminated %d dead instructions, among which %d opens' % (count, open_count)
def print_graph(self, filename):
f = open(filename, 'w')
print >>f, 'digraph G {'
for i in range(self.G.n):
for j in self.G[i]:
print >>f, '"%d: %s" -> "%d: %s";' % \
(i, self.instructions[i], j, self.instructions[j])
print >>f, '}'
f.close()
def print_depth(self, filename):
f = open(filename, 'w')
for i in range(self.G.n):
print >>f, '%d: %s' % (self.depths[i], self.instructions[i])
f.close()