forked from bristolcrypto/SPDZ-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dijkstra.py
556 lines (532 loc) · 21 KB
/
dijkstra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
# (C) 2017 University of Bristol. See License.txt
from Compiler.oram import *
from Compiler.program import Program
ORAM = OptimalORAM
class HeapEntry(object):
fields = ['empty', 'prio', 'value']
def __init__(self, int_type, *args):
self.int_type = int_type
if not len(args):
raise CompilerError()
if len(args) == 1:
args = args[0]
for field,arg in zip(self.fields, args):
self.__dict__[field] = arg
def data(self):
return self.prio, self.value
def __repr__(self):
return '(' + ', '.join('%s=%s' % (field,self.__dict__[field]) \
for field in self.fields) + ')'
def __eq__(self, other):
return self.__dict__ == other.__dict__
def __gt__(self, other):
return (1 - self.empty) * (1 - other.empty) * \
(self.int_type(self.prio) > self.int_type(other.prio))
def __iter__(self):
for field in self.fields:
yield self.__dict__[field]
def __add__(self, other):
return type(self)(self.int_type, (i + j for i,j in zip(self, other)))
def __sub__(self, other):
return type(self)(self.int_type, (i - j for i,j in zip(self, other)))
def __xor__(self, other):
return type(self)(self.int_type, (i ^ j for i,j in zip(self, other)))
def __mul__(self, other):
return type(self)(self.int_type, (other * i for i in self))
__rxor__ = __xor__
__rmul__ = __mul__
def hard_conv_me(self, value_type):
return type(self)(self.int_type, \
*(value_type.hard_conv(x) for x in self))
def dump(self):
print_ln('empty %s, prio %s, value %s', *(reveal(x) for x in self))
class HeapORAM(object):
def __init__(self, size, oram_type, init_rounds, int_type):
self.int_type = int_type
self.oram = oram_type(size, entry_size=(32,log2(size)), \
init_rounds=init_rounds, \
value_type=int_type.basic_type)
def __getitem__(self, index):
return self.make_entry(*self.oram.read(index))
def make_entry(self, value, empty):
return HeapEntry(self.int_type, (empty,) + value)
def __setitem__(self, index, value):
self.oram.access(index, value.data(), True, new_empty=value.empty)
def access(self, index, value, write):
tmp = self.oram.access(index, value.data(), write)
return self.make_entry(*tmp)
def delete(self, index, for_real):
self.oram.delete(index, for_real)
def read_and_maybe_remove(self, index):
entry, state = self.oram.read_and_maybe_remove(index)
return self.make_entry(*entry), state
def add(self, index, entry, state):
self.oram.add(Entry(MemValue(index), \
[MemValue(i) for i in entry.data()], \
entry.empty), state=state)
def __len__(self):
return len(self.oram)
class HeapQ(object):
def __init__(self, max_size, oram_type=ORAM, init_rounds=-1, int_type=sint):
basic_type = int_type.basic_type
self.max_size = max_size
self.levels = log2(max_size)
self.depth = self.levels - 1
self.heap = HeapORAM(2**self.levels, oram_type, init_rounds, int_type)
self.value_index = oram_type(max_size, entry_size=log2(max_size), \
init_rounds=init_rounds, \
value_type=basic_type)
self.size = MemValue(int_type(0))
self.int_type = int_type
self.basic_type = basic_type
print 'heap: %d levels, depth %d, size %d, index size %d' % \
(self.levels, self.depth, self.heap.oram.size, self.value_index.size)
def update(self, value, prio, for_real=True):
self._update(self.basic_type.hard_conv(value), \
self.basic_type.hard_conv(prio), \
self.basic_type.hard_conv(for_real))
def pop(self, for_real=True):
return self._pop(self.basic_type.hard_conv(for_real))
def bubble_up(self, start):
bits = bit_decompose(start, self.levels)
bits.reverse()
bits = [0] + floatingpoint.PreOR(bits, self.levels)
bits = [bits[i+1] - bits[i] for i in range(self.levels)]
shift = sum([bit << i for i,bit in enumerate(bits)])
childpos = MemValue(start * shift)
@for_range(self.levels - 1)
def f(i):
parentpos = childpos.right_shift(1, self.levels)
parent, parent_state = self.heap.read_and_maybe_remove(parentpos)
child, child_state = self.heap.read_and_maybe_remove(childpos)
swap = parent > child
new_parent, new_child = cond_swap(swap, parent, child)
self.heap.add(childpos, new_child, child_state)
self.heap.add(parentpos, new_parent, parent_state)
self.value_index.access(new_parent.value, parentpos, swap)
self.value_index.access(new_child.value, childpos, swap)
childpos.write(parentpos)
@method_block
def _pop(self, for_real=True):
Program.prog.curr_tape.\
start_new_basicblock(name='heapq-pop')
pop_for_real = for_real * (self.size != 0)
entry = self.heap[1]
self.value_index.delete(entry.value, for_real)
last = self.heap[self.basic_type(self.size)]
self.heap.access(1, last, pop_for_real)
self.value_index.access(last.value, 1, for_real * (self.size != 1))
self.heap.delete(self.basic_type(self.size), for_real)
self.size -= self.int_type(pop_for_real)
parentpos = MemValue(self.basic_type(1))
@for_range(self.levels - 1)
def f(i):
childpos = 2 * parentpos
left_child, l_state = self.heap.read_and_maybe_remove(childpos)
right_child, r_state = self.heap.read_and_maybe_remove(childpos+1)
go_right = left_child > right_child
otherchildpos = childpos + 1 - go_right
childpos += go_right
child, other_child = cond_swap(go_right, left_child, right_child)
child_state, other_state = cond_swap(go_right, l_state, r_state)
parent, parent_state = self.heap.read_and_maybe_remove(parentpos)
swap = parent > child
new_parent, new_child = cond_swap(swap, parent, child)
self.heap.add(childpos, new_child, child_state)
self.heap.add(otherchildpos, other_child, other_state)
self.heap.add(parentpos, new_parent, parent_state)
self.value_index.access(new_parent.value, parentpos, swap)
self.value_index.access(new_child.value, childpos, swap)
parentpos.write(childpos)
self.check()
return entry.value
@method_block
def _update(self, value, prio, for_real=True):
Program.prog.curr_tape.\
start_new_basicblock(name='heapq-update')
index, not_found = self.value_index.read(value)
self.size += self.int_type(not_found * for_real)
index = if_else(not_found, self.basic_type(self.size), index[0])
self.value_index.access(value, self.basic_type(self.size), \
not_found * for_real)
self.heap.access(index, HeapEntry(self.int_type, 0, prio, value), for_real)
self.bubble_up(index)
self.check()
def __len__(self):
return self.size
def check(self):
if debug:
for i in range(len(self.heap)):
if ((2 * i + 1 < len(self.heap) and \
self.heap[i] > self.heap[2*i+1]) or \
(2 * i + 2 < len(self.heap) and \
self.heap[i] > self.heap[2*i+2])) and \
not self.heap[i].empty:
raise Exception('heap condition violated at %d' % i)
if i >= self.size and not self.heap[i].empty:
raise Exception('wrong size at %d' % i)
if i < self.size and self.heap[i].empty:
raise Exception('empty entry in heap at %d' % i)
# if not self.heap[i].empty and \
# self.heap[i].value not in self.value_index:
# raise Exception('missing index at %d' % i)
for value,(index,empty) in enumerate(self.value_index):
if not empty and self.heap[index].value != value:
raise Exception('index violated at %d' % index)
if debug_online:
@for_range(self.max_size)
def f(value):
index, not_found = self.value_index.read(value)
index, not_found = index[0].reveal(), not_found.reveal()
@if_(not_found == 0)
def f():
heap_value = self.heap[index].value.reveal()
@if_(heap_value != value)
def f():
print_ln('heap mismatch: %s:%s in index, %s in heap', \
value, index, heap_value)
crash()
def dump(self, msg=''):
print_ln(msg)
print_ln('size: %s', self.size.reveal())
print_str('heap:')
if isinstance(self.heap.oram, LinearORAM):
for entry in self.heap.oram.ram:
print_str(' %s:%s,%s', entry.empty().reveal(), \
entry.x[0].reveal(), entry.x[1].reveal())
else:
for i in range(self.max_size+1):
print_str(' %s:%s', *(x.reveal() for x in self.heap.oram[i]))
print_ln()
print_str('value index:')
if isinstance(self.value_index, LinearORAM):
for entry in self.value_index.ram:
print_str(' %s:%s', entry.empty().reveal(), entry.x[0].reveal())
else:
for i in range(self.max_size):
print_str(' %s:%s', i, self.value_index[i].reveal())
print_ln()
print_ln()
def dijkstra(source, edges, e_index, oram_type, n_loops=None, int_type=sint):
basic_type = int_type.basic_type
vert_loops = n_loops * e_index.size / edges.size \
if n_loops else -1
dist = oram_type(e_index.size, entry_size=(32,log2(e_index.size)), \
init_rounds=vert_loops, value_type=basic_type)
#visited = ORAM(e_index.size)
#previous = oram_type(e_index.size)
Q = HeapQ(e_index.size, oram_type, init_rounds=vert_loops, \
int_type=int_type)
if n_loops is not None:
# put initialization in different timer
stop_timer()
start_timer(1)
dist[source] = (0,0)
Q.update(source, 0)
if n_loops is not None:
stop_timer(1)
start_timer()
last_edge = MemValue(basic_type(1))
i_edge = MemValue(int_type(0))
u = MemValue(basic_type(0))
@for_range(n_loops or edges.size)
def f(i):
cint(i).print_reg('loop')
time()
u.write(if_else(last_edge, Q.pop(last_edge), u))
#visited.access(u, True, last_edge)
i_edge.write(int_type(if_else(last_edge, e_index[u], i_edge)))
v, weight, le = edges[i_edge]
last_edge.write(le)
i_edge.iadd(1)
alt = int_type(dist[u][0]) + int_type(weight)
#is_shorter = (alt < dist[v]) * (1 - visited[v])
dv, not_visited = dist.read(v)
# relying on default dv negative here
is_shorter = (alt < int_type(dv[0])) + not_visited
dist.access(v, (basic_type(alt), u), is_shorter)
#previous.access(v, u, is_shorter)
Q.update(v, basic_type(alt), is_shorter)
print_ln('u: %s, v: %s, alt: %s, dv: %s, first visit: %s', \
u.reveal(), v.reveal(), alt.reveal(), dv[0].reveal(), \
not_visited.reveal())
return dist
def convert_graph(G):
edges = [None] * (2 * G.size())
e_index = [None] * (len(G))
i = 0
for v in G:
e_index[v] = i
for u in G[v]:
edges[i] = [u, G[v][u]['weight'], 0]
i += 1
edges[i-1][-1] = 1
return edges, e_index
def test_dijkstra(G, source, oram_type=ORAM, n_loops=None, int_type=sint):
for u in G:
for v in G[u]:
G[u][v].setdefault('weight', 1)
edges_list, e_index_list = convert_graph(G)
edges = oram_type(len(edges_list), \
entry_size=(log2(len(G)), log2(len(G)), 1), \
init_rounds=0, value_type=int_type.basic_type)
e_index = oram_type(len(e_index_list), entry_size=log2(len(edges_list)), \
value_type=int_type.basic_type)
for i in range(n_loops or edges.size):
cint(i).print_reg('edge')
time()
edges[i] = edges_list[i]
vert_loops = n_loops * e_index.size / edges.size \
if n_loops else e_index.size
for i in range(vert_loops):
cint(i).print_reg('vert')
time()
e_index[i] = e_index_list[i]
return dijkstra(source, edges, e_index, oram_type, n_loops, int_type)
def test_dijkstra_on_cycle(n, oram_type=ORAM, n_loops=None, int_type=sint):
n_edges = 2 * n
edges = oram_type(n_edges, entry_size=(log2(n),log2(n),1), init_rounds=0,
value_type=int_type.basic_type)
e_index = oram_type(n, entry_size=log2(n_edges), init_rounds=0, \
value_type=int_type.basic_type)
@for_range(n_loops or edges.size)
def f(i):
cint(i).print_reg('edge')
time()
neighbour = ((i >> 1) + 2 * (i % 2) - 1 + n) % n
edges[i] = (neighbour, 1, i % 2)
vert_loops = n_loops * e_index.size / edges.size \
if n_loops else e_index.size
@for_range(vert_loops)
def f(i):
cint(i).print_reg('vert')
time()
e_index[i] = 2 * i
return dijkstra(0, edges, e_index, oram_type, n_loops, int_type)
def test_dijkstra_on_complete(n, oram_type=ORAM, n_loops=None, int_type=sint):
n_edges = n**2
edges = oram_type(n_edges, entry_size=(log2(n),log2(n),1), init_rounds=0,
value_type=int_type.basic_type)
e_index = oram_type(n, entry_size=log2(n_edges), init_rounds=0, \
value_type=int_type.basic_type)
@for_range(n_loops or n)
def f(i):
@for_range(n_loops - 1 if n_loops else n - 1)
def f(j):
cint(i).print_reg('v1')
cint(j).print_reg('v2')
time()
edges[i*n+j] = (j, 1, 0)
edges[i*n+n-1] = (n - 1, 1, 1)
if n_loops is not None:
stop_timer()
start_timer(2)
@for_range(n_loops or n)
def f(i):
cint(i).print_reg('vert')
time()
e_index[i] = n * i
if n_loops is not None:
stop_timer(2)
start_timer()
return dijkstra(0, edges, e_index, oram_type, \
n_loops**2 if n_loops else n**2, int_type)
class ExtInt(object):
def __init__(self, x, inf=False):
self.x = x
self.inf = inf
def __add__(self, other):
if isinstance(other, ExtInt):
return ExtInt(self.x + other.x, self.inf + other.inf)
else:
return ExtInt(self.x + other, self.inf)
def __sub__(self, other):
if isinstance(other, ExtInt):
return ExtInt(self.x - other.x, self.inf - other.inf)
else:
return ExtInt(self.x - other, self.inf)
def __rsub__(self, other):
return ExtInt(other - self.x, -self.inf)
def __mul__(self, other):
if isinstance(other, ExtInt):
raise Exception()
return ExtInt(self.x * other.x, self.inf * other.inf)
else:
return ExtInt(self.x * other, self.inf * other)
__radd__ = __add__
__rmul__ = __mul__
def __lt__(self, other):
if isinstance(other, ExtInt):
return ((1 - self.inf) * (1 - other.inf) * (self.x < other.x)) + \
other.inf
else:
return (1 - self.inf) * (self.x < other)
def __gt__(self, other):
if isinstance(other, ExtInt):
return ((1 - self.inf) * (1 - other.inf) * (self.x > other.x)) + \
self.inf
else:
return 1 - (1 -self.inf) * (1 - (self.x > other))
def __repr__(self):
if self.inf:
return 'T'
else:
return str(self.x)
class Vector(object):
""" Works like a vector. """
def __add__(self, other):
print 'add', type(self)
res = type(self)(len(self))
@for_range(len(self))
def f(i):
res[i] = self[i] + other[i]
return res
def __sub__(self, other):
print 'sub', type(other)
res = type(other)(len(self))
@for_range(len(self))
def f(i):
res[i] = self[i] - other[i]
return res
def __mul__(self, other):
if isinstance(other, Vector):
res = type(self)(1)
res[0] = ExtInt(0)
@for_range(len(self))
def f(i):
res[0] += self[i] * other[i]
return res[0]
else:
print 'mul', type(self)
res = type(self)(len(self))
@for_range_parallel(1024, len(self))
def f(i):
res[i] = self[i] * other
return res
__rmul__ = __mul__
class VectorList(Vector, list):
pass
class VectorArray(Vector):
def __init__(self, length, address=None):
self.length = length
if address is None:
self.arrays = [Array(length, 's') for i in range(2)]
else:
self.arrays = [Array(length, 's', addr) \
for addr in (address,address+length)]
def assign(self, values):
@for_range(len(self))
def f(i):
self[i] = values[i]
def assign_all(self, value):
self.arrays[0].assign_all(value.x)
self.arrays[1].assign_all(value.inf)
def __getitem__(self, index):
return ExtInt(*[v[index] for v in self.arrays])
def __setitem__(self, index, value):
self.arrays[0][index] = value.x
self.arrays[1][index] = value.inf
def __len__(self):
return len(self.arrays[0])
class IntVectorArray(Array, Vector):
def __init__(self, length):
Array.__init__(self, length, 's')
class Matrix(object):
""" Guess what. """
def __init__(self, rows, columns):
self.rows = rows
self.columns = columns
self.address = Array(2 * rows * columns, 's').address
def __getitem__(self, index):
return VectorArray(self.columns, self.address + 2 * self.columns * index)
def __setitem__(self, index, value):
self[index].assign(value)
def __len__(self):
return self.rows
def assign_all(self, value):
@for_range(len(self))
def f(i):
self[i].assign_all(value)
return self
def updatevector(vector, index, value):
@for_range_parallel(1024, len(vector))
def f(i):
vector[i] += index[i] * (value - vector[i])
def binarymin(A):
if len(A) == 1:
return [1], A[0]
else:
half = len(A) / 2
A_prime = VectorArray(half)
B = IntVectorArray(half)
i = IntVectorArray(len(A))
@for_range_parallel(128, half)
def f(j):
B[j] = A[2*j] < A[2*j+1]
A_prime[j] = if_else(B[j], A[2*j], A[2*j+1])
i_prime, min = binarymin(A_prime)
@for_range_parallel(1024, half)
def f(j):
i[2*j] = B[j] * i_prime[j]
i[2*j+1] = (1 - B[j]) * i_prime[j]
return i, min
def stupid_dijkstra(M, s, n_loops=None):
if n_loops is not None:
stop_timer()
start_timer(1)
P = Matrix(len(M), len(M))
P.assign_all(ExtInt(0))
d = VectorArray(len(M))
d.assign_all(ExtInt(0,True))
q = VectorArray(len(M))
q.assign_all(ExtInt(0))
d_prime = VectorArray(len(M))
updatevector(d, s, 0)
if n_loops is not None:
stop_timer(1)
start_timer()
@for_range(n_loops or len(M))
def f(i):
if n_loops is not None:
stop_timer()
start_timer(2)
d_prime.assign(d + q)
k, min = binarymin(d_prime)
updatevector(q, k, ExtInt(0,True))
if n_loops is not None:
stop_timer(2)
start_timer()
@for_range(n_loops or len(M))
def f(j):
a = (d + M[j]) * k
c = a < d[j]
P[j] = P[j] + c * (k - P[j])
d[j] += c * (a - d[j])
return d, P
def convert_graph_to_matrix(G):
M = Matrix(len(G), len(G))
M.assign_all(ExtInt(0,True))
for u in G:
for v in G[u]:
M[u][v] = ExtInt(G[u][v].get('weight', 1))
return M
def test_stupid_dijkstra(G, source):
return stupid_dijkstra(convert_graph_to_matrix(G), \
demux(bit_decompose(source, log2(len(G)))))
def test_stupid_dijkstra_on_cycle(n, n_loops=None):
if n_loops is not None:
stop_timer()
start_timer(1)
M = Matrix(n, n)
M.assign_all(ExtInt(0,True))
s = IntVectorArray(n)
s.assign_all(0)
s[0] = 1
@for_range(n)
def f(i):
M[i][(i+1)%n] = ExtInt(1)
M[i][(i-1)%n] = ExtInt(1)
if n_loops is not None:
stop_timer(1)
start_timer()
return stupid_dijkstra(M, s, n_loops)