-
Notifications
You must be signed in to change notification settings - Fork 0
/
etl.py
131 lines (105 loc) · 4.35 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def process_song_file(cur, filepath):
"""
Reads a json file from the song_data folder, reads information
of songs and artists and saves them to songs and artists tables in
the database
Arguments:
cur: DB cursor
filepath: path to json file
Return: None
"""
# open song file
df = pd.read_json(filepath, typ='series')
# insert song record
song_data = [df['song_id'],df['title'],df['artist_id'],df['year'],df['duration']]
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = [df['artist_id'], df['artist_name'],df['artist_location'],
df['artist_latitude'],df['artist_longitude']]
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""
Reads a json file from the log_data folder, reads information
of log and user tables in
the database
Arguments:
cur: DB cursor
filepath: path to json file
Return: None
"""
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df['page']=='NextSong']
# convert timestamp column to datetime
df['ts'] = pd.to_datetime(df['ts'], unit='ms')
t =pd.Series(df['ts'].unique())
# insert time data records
time_data = (t,t.dt.hour,t.dt.day,t.dt.week,t.dt.month,t.dt.year,t.dt.weekday)
column_labels = ('start_time' ,'hour','day','week','month','year','weekday')
time_df = pd.DataFrame({
column_labels[0]: time_data[0].to_string(index=False).replace("\n", ",").strip().split(",")
,
column_labels[1]: time_data[1].to_string(index=False).replace("\n", ",").strip().split(",")
,
column_labels[2]: time_data[2].to_string(index=False).replace("\n", ",").strip().split(",")
,
column_labels[3]: time_data[3].to_string(index=False).replace("\n", ",").strip().split(",")
,
column_labels[4]: time_data[4].to_string(index=False).replace("\n", ",").strip().split(",")
,
column_labels[5]: time_data[5].to_string(index=False).replace("\n", ",").strip().split(",")
,
column_labels[6]: time_data[6].to_string(index=False).replace("\n", ",").strip().split(",")
})
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = pd.DataFrame({'user_id':list(df['userId']),
'first_name':list(df['firstName']),
'last_name': list(df['lastName']),
'gender':list(df['gender']),
'level':list(df['level'])} )
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results[0],results[1]
else:
songid, artistid = None, None
# insert songplay record
songplay_data = (index,row.ts,row.userId,row.level,songid,artistid,row.sessionId,row.location,row.userAgent)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()