forked from guillaume-be/rust-bert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelectra_masked_lm.rs
93 lines (85 loc) · 3.5 KB
/
electra_masked_lm.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
// Copyright 2020 The Google Research Authors.
// Copyright 2019-present, the HuggingFace Inc. team
// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
// Copyright 2019 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use rust_bert::electra::{
ElectraConfig, ElectraConfigResources, ElectraForMaskedLM, ElectraModelResources,
ElectraVocabResources,
};
use rust_bert::resources::{RemoteResource, Resource};
use rust_bert::Config;
use rust_tokenizers::{BertTokenizer, Tokenizer, TruncationStrategy, Vocab};
use tch::{nn, no_grad, Device, Tensor};
fn main() -> anyhow::Result<()> {
// Resources paths
let config_resource = Resource::Remote(RemoteResource::from_pretrained(
ElectraConfigResources::BASE_GENERATOR,
));
let vocab_resource = Resource::Remote(RemoteResource::from_pretrained(
ElectraVocabResources::BASE_GENERATOR,
));
let weights_resource = Resource::Remote(RemoteResource::from_pretrained(
ElectraModelResources::BASE_GENERATOR,
));
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
// Set-up masked LM model
let device = Device::Cpu;
let mut vs = nn::VarStore::new(device);
let tokenizer: BertTokenizer =
BertTokenizer::from_file(vocab_path.to_str().unwrap(), true, true)?;
let config = ElectraConfig::from_file(config_path);
let electra_model = ElectraForMaskedLM::new(&vs.root(), &config);
vs.load(weights_path)?;
// Define input
let input = [
"Looks like one [MASK] is missing",
"It was a very nice and [MASK] day",
];
let tokenized_input =
tokenizer.encode_list(input.to_vec(), 128, &TruncationStrategy::LongestFirst, 0);
let max_len = tokenized_input
.iter()
.map(|input| input.token_ids.len())
.max()
.unwrap();
let tokenized_input = tokenized_input
.iter()
.map(|input| input.token_ids.clone())
.map(|mut input| {
input.extend(vec![0; max_len - input.len()]);
input
})
.map(|input| Tensor::of_slice(&(input)))
.collect::<Vec<_>>();
let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device);
// Forward pass
let model_output =
no_grad(|| electra_model.forward_t(Some(input_tensor), None, None, None, None, false));
// Print masked tokens
let index_1 = model_output
.prediction_scores
.get(0)
.get(4)
.argmax(0, false);
let index_2 = model_output
.prediction_scores
.get(1)
.get(7)
.argmax(0, false);
let word_1 = tokenizer.vocab().id_to_token(&index_1.int64_value(&[]));
let word_2 = tokenizer.vocab().id_to_token(&index_2.int64_value(&[]));
println!("{}", word_1); // Outputs "thing" : "Looks like one [thing] is missing"
println!("{}", word_2); // Outputs "sunny" : "It was a very nice and [sunny] day"
Ok(())
}