|
10 | 10 | 2. [安装](https://www.youtube.com/watch?v=pk6sAg2M-fU&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=3)
|
11 | 11 | * 介绍如何安装和安装时的限制
|
12 | 12 | * [优酷链接](http://v.youku.com/v_show/id_XMTYxMzQzMjEyNA==.html?f=27327189&o=1)
|
| 13 | + |
13 | 14 | ---
|
14 | 15 |
|
15 | 16 | 3. [例子1](https://www.youtube.com/watch?v=tM4z02cDNa4&index=4&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8)
|
16 | 17 | * 用一个线性回归的例子来说明神经网络究竟在干什么. 我们还可视化了整个学习的过程. 代码和实现我们会在[例子3](https://www.youtube.com/watch?v=FTR36h-LKcY&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=11)中慢慢说.
|
17 | 18 | * [优酷链接](http://v.youku.com/v_show/id_XMTYxMzQzNDc5Ng==.html?f=27327189&from=y1.2-3.4.4&spm=a2h0j.8191423.item_XMTYxMzQzNDc5Ng==.A)
|
18 | 19 |
|
| 20 | +--- |
| 21 | + |
19 | 22 | 4. [处理结构](https://www.youtube.com/watch?v=9l_c5260JQ8&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=5)
|
20 | 23 | * Tensorflow 的处理,代码结构可能和我们想象得不一样. 我们需要先定义好整个 graph, 也就是神经网络的框架,才能开始运算.
|
21 | 24 | * [优酷链接](http://v.youku.com/v_show/id_XMTYxMzQ1NzUwOA==.html?f=27327189&o=1)
|
22 | 25 |
|
| 26 | +--- |
| 27 | + |
23 | 28 | 5. [例子2](https://www.youtube.com/watch?v=JKR1Dxinwwc&index=6&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8)
|
24 | 29 | * 这个例子是我们第一个开始将代码的例子. 我们来熟悉一下 tf 的代码吧. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf5_example2))
|
25 | 30 | * [优酷链接](http://v.youku.com/v_show/id_XMTYxMzQ2NzE0OA==.html?f=27327189&o=1)
|
26 | 31 |
|
| 32 | +--- |
| 33 | + |
27 | 34 | 6. [Session 会话控制](https://www.youtube.com/watch?v=HhjtJ73AwIY&index=7&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8)
|
28 | 35 | * Session 是 tf 的主要结构之一, 他骑着控制整个运算结构的功能. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/tensorflowTUT/tensorflow6_session.py))
|
29 | 36 | * [优酷链接](http://v.youku.com/v_show/id_XMTYxMzYzNTc2OA==.html?f=27327189&o=1)
|
30 | 37 |
|
| 38 | +--- |
| 39 | + |
31 | 40 | 7. [Variable 变量](https://www.youtube.com/watch?v=jGxK7gfglrI&index=8&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8)
|
32 | 41 | * 我们会把 weights 还有 biases 当做变量来储存, 更新. 这个是介绍 variable 的基本使用方法. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/tensorflowTUT/tensorflow7_variable.py))
|
33 | 42 | * [优酷链接](http://v.youku.com/v_show/id_XMTYxMzY2MDM2OA==.html?f=27327189&o=1)
|
34 | 43 |
|
| 44 | +--- |
| 45 | + |
| 46 | + |
35 | 47 | 8. [Placeholder 传入值](https://www.youtube.com/watch?v=fCWbRboJ4Rs&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=9)
|
36 | 48 | * 定义好的神经网络结构, 我们就能用 placeholder 当作数据的接收口, 一次次传入数据. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/tensorflowTUT/tensorflow8_feeds.py))
|
37 | 49 | * [优酷链接](http://v.youku.com/v_show/id_XMTYxMzY5NzI4MA==.html?f=27327189&o=1)
|
38 | 50 |
|
| 51 | +--- |
| 52 | + |
39 | 53 | 9. [激励函数](https://www.youtube.com/watch?v=6gbGCxBGxZA&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=10)
|
40 | 54 | * 请参考激励函数在<[机器学习-简介系列](https://www.youtube.com/watch?v=tI9AbaBfnPc&list=PLXO45tsB95cIFm8Y8vMkNNPPXAtYXwKin&index=9)>里的4分钟介绍. ([优酷的<机器学习-简介系列>](http://v.youku.com/v_show/id_XMTcxMTExNjA5Mg==.html?f=27892935&o=1))
|
41 | 55 | * [优酷链接](http://v.youku.com/v_show/id_XMTU5NjA2MTk0MA==.html?f=27327189&o=1)
|
42 | 56 |
|
| 57 | +--- |
| 58 | + |
43 | 59 | 10. [例子3 添加神经层](https://www.youtube.com/watch?v=FTR36h-LKcY&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=11)
|
44 | 60 | * 用简单的函数做一个添加神经层的功能, 以后再不断套用这个功能 ([代码](https://github.com/MorvanZhou/tutorials/blob/master/tensorflowTUT/tensorflow10_def_add_layer.py))
|
45 | 61 | * [优酷链接](http://v.youku.com/v_show/id_XMTU5NjEzOTA4NA==.html?f=27327189&o=1)
|
46 | 62 |
|
| 63 | +--- |
| 64 | + |
47 | 65 | 11. [例子3 建造神经网络](https://www.youtube.com/watch?v=S9wBMi2B4Ss&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=12)
|
48 | 66 | * 运用上上次的添加层功能, 开始搭建神经网络. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf11_build_network))
|
49 | 67 | * [优酷链接](http://v.youku.com/v_show/id_XMTU5OTA5NDI1Mg==.html?f=27327189&o=1)
|
50 | 68 |
|
| 69 | +--- |
| 70 | + |
51 | 71 | 12. [例子3 结果可视化](https://www.youtube.com/watch?v=nhn8B0pM9ls&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=13)
|
52 | 72 | * 对于怎个例子3的学习步骤的可视化教程. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf12_plot_result))
|
53 | 73 | * [优酷链接](http://v.youku.com/v_show/id_XMTU5OTQzOTMzNg==.html?f=27327189&o=1)
|
54 | 74 |
|
| 75 | +--- |
| 76 | + |
55 | 77 | 13. [Optimizer 优化器](https://www.youtube.com/watch?v=9BmaWixFwj8&index=14&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8)
|
56 | 78 | * 请参考优化器在<[机器学习-简介系列](https://www.youtube.com/watch?v=UlUGGB7akfE&list=PLXO45tsB95cIFm8Y8vMkNNPPXAtYXwKin&index=11)>里的4分钟介绍. ([优酷的<机器学习-简介系列>](http://v.youku.com/v_show/id_XMTc2MjA0ODQyOA==.html?f=27892935&o=1))
|
57 | 79 | * [优酷链接](http://v.youku.com/v_show/id_XMTYwMzk1NDM4OA==.html?f=27327189&o=1)
|
58 | 80 |
|
| 81 | +--- |
| 82 | + |
59 | 83 | 14. [Tensorboard1 可视化好帮手](https://www.youtube.com/watch?v=SDeQRRRMUHU&index=15&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8)
|
60 | 84 | * 神经网络结构和参数, 数据的可视化. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf14_tensorboard))
|
61 | 85 | * [优酷链接](http://v.youku.com/v_show/id_XMTYxMTYwMjEwMA==.html?f=27327189&o=1)
|
62 | 86 |
|
| 87 | +--- |
| 88 | + |
63 | 89 | 15. [Tensorboard2 可视化好帮手](https://www.youtube.com/watch?v=L-RDrbYNWDk&index=16&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8)
|
64 | 90 | * 同上. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf15_tensorboard))
|
65 | 91 | * [优酷链接](http://v.youku.com/v_show/id_XMTYxMTcxODYyMA==.html?f=27327189&o=1)
|
66 | 92 |
|
| 93 | +--- |
| 94 | + |
67 | 95 | 16. [Classification 分类神经网络](https://www.youtube.com/watch?v=aNjdw9w_Qyc&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=17)
|
68 | 96 | * 搭建一个用于分类的神经网络. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf16_classification))
|
69 | 97 | * [优酷链接](http://v.youku.com/v_show/id_XMTYxMjQ2NTYyNA==.html?f=27327189&o=1)
|
70 | 98 |
|
| 99 | +--- |
| 100 | + |
71 | 101 | 17. [Dropout 过拟合问题](https://www.youtube.com/watch?v=f2F9Xsd7KVk&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=18)
|
72 | 102 | * 请参考过拟合在<[机器学习-简介系列](https://www.youtube.com/watch?v=e9OKufD6lRM&list=PLXO45tsB95cIFm8Y8vMkNNPPXAtYXwKin&index=10)>的4分钟介绍. ([优酷的<机器学习-简介系列>](http://v.youku.com/v_show/id_XMTczNjA2Nzc5Ng==.html?f=27892935&o=1)). 这节实现了用 dropout 解决过拟合的途径. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf17_dropout))
|
73 | 103 | * [优酷链接](http://v.youku.com/v_show/id_XMTYxODI2Mzk5Ng==.html?f=27327189&o=1)
|
74 | 104 |
|
| 105 | +--- |
| 106 | + |
75 | 107 | 18. [CNN 1 卷积神经网络](https://www.youtube.com/watch?v=tjcgL5RIdTM&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=19)
|
76 | 108 | * 请参考CNN 在<[机器学习-简介系列](https://www.youtube.com/watch?v=hMIZ85t9r9A&index=3&list=PLXO45tsB95cIFm8Y8vMkNNPPXAtYXwKin)>中的介绍. ([优酷的<机器学习-简介系列>](http://v.youku.com/v_show/id_XMTY4MzAyNTc4NA==.html?f=27892935&o=1))
|
77 | 109 | * [优酷链接](http://v.youku.com/v_show/id_XMTYyMTUyMjc0OA==.html?f=27327189&o=1)
|
78 | 110 |
|
| 111 | +--- |
| 112 | + |
79 | 113 | 19. [CNN 2 卷积神经网络](https://www.youtube.com/watch?v=JCBe_yjDmY8&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=20)
|
80 | 114 | * 代码部分. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf18_CNN2))
|
81 | 115 | * [优酷链接](http://v.youku.com/v_show/id_XMTYyMTY1MjMwOA==.html?f=27327189&o=1)
|
82 | 116 |
|
| 117 | +--- |
| 118 | + |
83 | 119 | 20. [CNN 3 卷积神经网络](https://www.youtube.com/watch?v=pjjH2dGGwwY&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=21)
|
84 | 120 | * 代码部分. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf18_CNN3))
|
85 | 121 | * [优酷链接](http://v.youku.com/v_show/id_XMTYyMTc3ODc0OA==.html?f=27327189&o=1)
|
86 | 122 |
|
| 123 | +--- |
| 124 | + |
87 | 125 | 21. [Saver 保存参数](https://www.youtube.com/watch?v=R-22pnDezHU&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=22)
|
88 | 126 | * 训练好了以后, 我们可以保存这些 weights 和 biases 的参数,避免重复训练. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/tensorflowTUT/tf19_saver.py))
|
89 | 127 | * [优酷链接](http://v.youku.com/v_show/id_XMTYyNzE2MDUwOA==.html?f=27327189&o=1)
|
90 | 128 |
|
| 129 | +--- |
| 130 | + |
91 | 131 | 22. [RNN 循环神经网络](https://www.youtube.com/watch?v=i-cd3wzsHtw&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=23)
|
92 | 132 | * 请参考RNN 在<[机器学习-简介系列](https://www.youtube.com/watch?v=EEtf4kNsk7Q&index=4&list=PLXO45tsB95cIFm8Y8vMkNNPPXAtYXwKin)>中的4分钟介绍. 还有LSTM 在<[机器学习-简介系列](https://www.youtube.com/watch?v=Vdg5zlZAXnU&index=5&list=PLXO45tsB95cIFm8Y8vMkNNPPXAtYXwKin)>中的介绍. 优酷的这两段简介视频在这: [RNN简介](http://v.youku.com/v_show/id_XMTcyNzYwNjU1Ng==.html?f=27892935&o=1), [LSTM简介](http://v.youku.com/v_show/id_XMTc0MzY5MTQxMg==.html?f=27892935&o=1)
|
93 | 133 | * [优酷链接](http://v.youku.com/v_show/id_XMTcyNjE0ODM4MA==.html?f=27327189&o=1)
|
94 | 134 |
|
| 135 | +--- |
| 136 | + |
95 | 137 | 23. [RNN LSTM 例子1 分类](https://www.youtube.com/watch?v=IASyrQamTQk&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=24)
|
96 | 138 | * 使用LSTM RNN 做 MNIST 图片集的分类问题. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf20_RNN2))
|
97 | 139 | * [优酷链接](http://v.youku.com/v_show/id_XMTcyNjE5ODU3Mg==.html?f=27327189&o=1)
|
98 | 140 |
|
| 141 | +--- |
| 142 | + |
99 | 143 | 24. [RNN LSTM 例子2 回归](https://www.youtube.com/watch?v=nMLPYT_SMRo&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=25)
|
100 | 144 | * 使用LSTM RNN 做 sin, cos 曲线的回归问题. ([代码](https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf20_RNN2.2))
|
101 | 145 | * [优酷链接](http://v.youku.com/v_show/id_XMTczMDY5Mjc5Ng==.html?f=27327189&o=1)
|
102 | 146 |
|
| 147 | +--- |
| 148 | + |
103 | 149 | 25. [RNN LSTM 例子2 回归的学习过程可视化](https://www.youtube.com/watch?v=V-pvtUThhNE&list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8&index=26)
|
104 | 150 | * 对于上面的例子的训练可视化. (代码同上)
|
105 | 151 | * [优酷链接](http://v.youku.com/v_show/id_XMTczMDcxMjEwNA==.html?f=27327189&o=1)
|
| 152 | + |
| 153 | +--- |
0 commit comments