forked from Choddeok/EmoSphere-TTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
adapt.py
201 lines (182 loc) · 10.7 KB
/
adapt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import shutil
import os
import time
from montreal_forced_aligner import __version__
from montreal_forced_aligner.corpus.align_corpus import AlignableCorpus
from montreal_forced_aligner.dictionary import Dictionary, MultispeakerDictionary
from montreal_forced_aligner.aligner import TrainableAligner, PretrainedAligner
from montreal_forced_aligner.models import AcousticModel
from montreal_forced_aligner.config import TEMP_DIR, align_yaml_to_config, load_basic_align, load_command_configuration, \
train_yaml_to_config
from montreal_forced_aligner.utils import get_available_acoustic_languages, get_pretrained_acoustic_path, \
get_available_dict_languages, validate_dictionary_arg
from montreal_forced_aligner.helper import setup_logger, log_config
from montreal_forced_aligner.exceptions import ArgumentError
def load_adapt_config():
training_config, align_config = train_yaml_to_config('mfa_usr/adapt_config.yaml', require_mono=False)
training_config.training_configs[0].fmllr_iterations = list(
range(0, training_config.training_configs[0].num_iterations))
training_config.training_configs[0].realignment_iterations = list(range(0, training_config.training_configs[
0].num_iterations))
return training_config, align_config
class AcousticModel2(AcousticModel):
def adaptation_config(self):
train, align = load_adapt_config()
return train
def adapt_model(args, unknown_args=None):
command = 'align'
all_begin = time.time()
if not args.temp_directory:
temp_dir = TEMP_DIR
else:
temp_dir = os.path.expanduser(args.temp_directory)
corpus_name = os.path.basename(args.corpus_directory)
if corpus_name == '':
args.corpus_directory = os.path.dirname(args.corpus_directory)
corpus_name = os.path.basename(args.corpus_directory)
data_directory = os.path.join(temp_dir, corpus_name)
if args.config_path:
align_config = align_yaml_to_config(args.config_path)
else:
align_config = load_basic_align()
align_config.use_mp = not args.disable_mp
align_config.debug = args.debug
align_config.overwrite = args.overwrite
align_config.cleanup_textgrids = not args.disable_textgrid_cleanup
if unknown_args:
align_config.update_from_args(unknown_args)
conf_path = os.path.join(data_directory, 'config.yml')
if getattr(args, 'clean', False) and os.path.exists(data_directory):
print('Cleaning old directory!')
shutil.rmtree(data_directory, ignore_errors=True)
if getattr(args, 'verbose', False):
log_level = 'debug'
else:
log_level = 'info'
logger = setup_logger(command, data_directory, console_level=log_level)
logger.debug('ALIGN CONFIG:')
log_config(logger, align_config)
conf = load_command_configuration(conf_path, {'dirty': False,
'begin': all_begin,
'version': __version__,
'type': command,
'corpus_directory': args.corpus_directory,
'dictionary_path': args.dictionary_path,
'acoustic_model_path': args.acoustic_model_path})
if conf['dirty'] or conf['type'] != command \
or conf['corpus_directory'] != args.corpus_directory \
or conf['version'] != __version__ \
or conf['dictionary_path'] != args.dictionary_path:
logger.warning(
'WARNING: Using old temp directory, this might not be ideal for you, use the --clean flag to ensure no '
'weird behavior for previous versions of the temporary directory.')
if conf['dirty']:
logger.debug('Previous run ended in an error (maybe ctrl-c?)')
if conf['type'] != command:
logger.debug('Previous run was a different subcommand than {} (was {})'.format(command, conf['type']))
if conf['corpus_directory'] != args.corpus_directory:
logger.debug('Previous run used source directory '
'path {} (new run: {})'.format(conf['corpus_directory'], args.corpus_directory))
if conf['version'] != __version__:
logger.debug('Previous run was on {} version (new run: {})'.format(conf['version'], __version__))
if conf['dictionary_path'] != args.dictionary_path:
logger.debug('Previous run used dictionary path {} '
'(new run: {})'.format(conf['dictionary_path'], args.dictionary_path))
if conf['acoustic_model_path'] != args.acoustic_model_path:
logger.debug('Previous run used acoustic model path {} '
'(new run: {})'.format(conf['acoustic_model_path'], args.acoustic_model_path))
os.makedirs(data_directory, exist_ok=True)
model_directory = os.path.join(data_directory, 'acoustic_models')
os.makedirs(model_directory, exist_ok=True)
acoustic_model = AcousticModel2(args.acoustic_model_path, root_directory=model_directory)
print("| acoustic_model.meta", acoustic_model.meta)
acoustic_model.log_details(logger)
training_config = acoustic_model.adaptation_config()
training_config.training_configs[0].update({'beam': align_config.beam, 'retry_beam': align_config.retry_beam})
training_config.update_from_align(align_config)
logger.debug('ADAPT TRAINING CONFIG:')
log_config(logger, training_config)
audio_dir = None
if args.audio_directory:
audio_dir = args.audio_directory
try:
corpus = AlignableCorpus(args.corpus_directory, data_directory,
speaker_characters=args.speaker_characters,
num_jobs=args.num_jobs, sample_rate=align_config.feature_config.sample_frequency,
logger=logger, use_mp=align_config.use_mp, punctuation=align_config.punctuation,
clitic_markers=align_config.clitic_markers, audio_directory=audio_dir)
if corpus.issues_check:
logger.warning('Some issues parsing the corpus were detected. '
'Please run the validator to get more information.')
logger.info(corpus.speaker_utterance_info())
if args.dictionary_path.lower().endswith('.yaml'):
dictionary = MultispeakerDictionary(args.dictionary_path, data_directory, logger=logger,
punctuation=align_config.punctuation,
clitic_markers=align_config.clitic_markers,
compound_markers=align_config.compound_markers,
multilingual_ipa=acoustic_model.meta['multilingual_ipa'],
strip_diacritics=acoustic_model.meta.get('strip_diacritics', None),
digraphs=acoustic_model.meta.get('digraphs', None))
else:
dictionary = Dictionary(args.dictionary_path, data_directory, logger=logger,
punctuation=align_config.punctuation,
clitic_markers=align_config.clitic_markers,
compound_markers=align_config.compound_markers,
multilingual_ipa=acoustic_model.meta['multilingual_ipa'],
strip_diacritics=acoustic_model.meta.get('strip_diacritics', None),
digraphs=acoustic_model.meta.get('digraphs', None))
acoustic_model.validate(dictionary)
begin = time.time()
previous = PretrainedAligner(corpus, dictionary, acoustic_model, align_config,
temp_directory=data_directory,
debug=getattr(args, 'debug', False), logger=logger)
a = TrainableAligner(corpus, dictionary, training_config, align_config,
temp_directory=data_directory,
debug=getattr(args, 'debug', False), logger=logger, pretrained_aligner=previous)
logger.debug('Setup adapter in {} seconds'.format(time.time() - begin))
a.verbose = args.verbose
begin = time.time()
a.train()
logger.debug('Performed adaptation in {} seconds'.format(time.time() - begin))
begin = time.time()
a.save(args.output_model_path, root_directory=model_directory)
a.export_textgrids(args.output_directory)
logger.debug('Exported TextGrids in {} seconds'.format(time.time() - begin))
logger.info('All done!')
except Exception as _:
conf['dirty'] = True
raise
finally:
handlers = logger.handlers[:]
for handler in handlers:
handler.close()
logger.removeHandler(handler)
conf.save(conf_path)
def validate_args(args, downloaded_acoustic_models, download_dictionaries):
if not os.path.exists(args.corpus_directory):
raise ArgumentError('Could not find the corpus directory {}.'.format(args.corpus_directory))
if not os.path.isdir(args.corpus_directory):
raise ArgumentError('The specified corpus directory ({}) is not a directory.'.format(args.corpus_directory))
args.dictionary_path = validate_dictionary_arg(args.dictionary_path, download_dictionaries)
if args.acoustic_model_path.lower() in downloaded_acoustic_models:
args.acoustic_model_path = get_pretrained_acoustic_path(args.acoustic_model_path.lower())
elif args.acoustic_model_path.lower().endswith(AcousticModel.extension):
if not os.path.exists(args.acoustic_model_path):
raise ArgumentError('The specified model path does not exist: ' + args.acoustic_model_path)
else:
raise ArgumentError(
'The language \'{}\' is not currently included in the distribution, '
'please align via training or specify one of the following language names: {}.'.format(
args.acoustic_model_path.lower(), ', '.join(downloaded_acoustic_models)))
def run_adapt_model(args, unknown_args=None, downloaded_acoustic_models=None, download_dictionaries=None):
if downloaded_acoustic_models is None:
downloaded_acoustic_models = get_available_acoustic_languages()
if download_dictionaries is None:
download_dictionaries = get_available_dict_languages()
try:
args.speaker_characters = int(args.speaker_characters)
except ValueError:
pass
args.corpus_directory = args.corpus_directory.rstrip('/').rstrip('\\')
validate_args(args, downloaded_acoustic_models, download_dictionaries)
adapt_model(args, unknown_args)