forked from horovod/horovod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocker-compose.test.yml
225 lines (219 loc) · 8.7 KB
/
docker-compose.test.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
version: '2.3'
services:
test-cpu-base:
build:
context: .
dockerfile: Dockerfile.test.cpu
args:
UBUNTU_VERSION: 18.04
GPP_VERSION: 7
MPI_KIND: None
PYTHON_VERSION: 3.8
TENSORFLOW_PACKAGE: tensorflow-cpu==2.6.0
KERAS_PACKAGE: None
PYTORCH_PACKAGE: torch==1.9.0+cpu
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==1.3.8
TORCHVISION_PACKAGE: torchvision==0.10.0+cpu
MXNET_PACKAGE: mxnet==1.8.0.post0
PYSPARK_PACKAGE: pyspark==3.1.2
SPARK_PACKAGE: spark-3.1.2/spark-3.1.2-bin-hadoop2.7.tgz
HOROVOD_BUILD_FLAGS: HOROVOD_WITH_GLOO=1
privileged: true
shm_size: 8gb
# our baseline first
test-cpu-gloo-py3_8-tf2_6_0-keras_none-torch1_9_0-mxnet1_8_0_p0-pyspark3_1_2:
extends: test-cpu-base
test-cpu-mpich-py3_8-tf2_6_0-keras_none-torch1_9_0-mxnet1_8_0_p0-pyspark3_1_2:
extends: test-cpu-base
build:
args:
MPI_KIND: MPICH
HOROVOD_BUILD_FLAGS: HOROVOD_WITHOUT_GLOO=1
test-cpu-oneccl-py3_8-tf2_6_0-keras_none-torch1_9_0-mxnet1_8_0_p0-pyspark3_1_2:
extends: test-cpu-base
build:
args:
MPI_KIND: ONECCL
HOROVOD_BUILD_FLAGS: HOROVOD_WITHOUT_GLOO=1
test-cpu-openmpi-py3_8-tf2_6_0-keras_none-torch1_9_0-mxnet1_8_0_p0-pyspark3_1_2:
extends: test-cpu-base
build:
args:
MPI_KIND: OpenMPI
HOROVOD_BUILD_FLAGS: HOROVOD_WITHOUT_GLOO=1
test-cpu-openmpi-gloo-py3_8-tf2_6_0-keras_none-torch1_9_0-mxnet1_8_0_p0-pyspark3_1_2:
extends: test-cpu-base
build:
args:
MPI_KIND: OpenMPI
test-cpu-gloo-py3_7-tf1_15_5-keras2_2_4-torch1_6_0-mxnet1_5_1_p0-pyspark3_1_2:
extends: test-cpu-base
build:
args:
PYTHON_VERSION: 3.7
# there is no tensorflow-cpu>1.15.0, so we use tensorflow==1.15.5
TENSORFLOW_PACKAGE: tensorflow==1.15.5
KERAS_PACKAGE: keras==2.2.4
PYTORCH_PACKAGE: torch==1.6.0+cpu
PYTORCH_LIGHTNING_PACKAGE: pytorch_lightning==1.3.8
TORCHVISION_PACKAGE: torchvision==0.7.0+cpu
MXNET_PACKAGE: mxnet==1.5.1.post0
# there is no mxnet-1.6.0.post0 and mxnet-1.6.0 does not work with horovod
# https://github.com/apache/incubator-mxnet/issues/16193
# however, there is an mxnet-cu101-1.6.0.post0, so we test this with gpu instead of cpu
# this cpu test variation is defined as gpu in gpu frameworks variations below
# test-cpu-gloo-py3_8-tf2_4_3-keras2_3_1-torch1_7_1-mxnet1_6_0_p0-pyspark3_1_2:
test-cpu-gloo-py3_8-tf2_5_1-keras_none-torch1_8_1-mxnet1_7_0_p2-pyspark3_1_2:
extends: test-cpu-base
build:
args:
TENSORFLOW_PACKAGE: tensorflow==2.5.1
PYTORCH_PACKAGE: torch==1.8.1+cpu
TORCHVISION_PACKAGE: torchvision==0.9.1
MXNET_PACKAGE: mxnet==1.7.0.post2
# then our baseline again, omitted ...
test-cpu-gloo-py3_8-tfhead-keras_none-torchhead-mxnethead-pyspark3_1_2:
extends: test-cpu-base
build:
args:
TENSORFLOW_PACKAGE: tf-nightly
KERAS_PACKAGE: None
PYTORCH_PACKAGE: torch-nightly
TORCHVISION_PACKAGE: torchvision
MXNET_PACKAGE: mxnet-nightly
test-cpu-gloo-py3_7-tf2_6_0-keras_none-torch1_9_0-mxnet1_8_0_p0-pyspark2_4_8:
extends: test-cpu-base
build:
args:
PYTHON_VERSION: 3.7
PYSPARK_PACKAGE: pyspark==2.4.8
SPARK_PACKAGE: spark-2.4.8/spark-2.4.8-bin-hadoop2.7.tgz
test-cpu-gloo-py3_8-tf2_6_0-keras_none-torch1_9_0-mxnet1_8_0_p0-pyspark3_0_3:
extends: test-cpu-base
build:
args:
PYTHON_VERSION: 3.8
PYSPARK_PACKAGE: pyspark==3.0.3
SPARK_PACKAGE: spark-3.0.3/spark-3.0.3-bin-hadoop2.7.tgz
# then our baseline again, omitted ...
test-gpu-base:
build:
context: .
dockerfile: Dockerfile.test.gpu
args:
GPP_VERSION: 7
MPI_KIND: None
PYTHON_VERSION: 3.8
PYSPARK_PACKAGE: pyspark==3.1.2
SPARK_PACKAGE: spark-3.1.2/spark-3.1.2-bin-hadoop2.7.tgz
HOROVOD_BUILD_FLAGS: HOROVOD_GPU_OPERATIONS=NCCL
HOROVOD_MIXED_INSTALL: 0
runtime: nvidia
# We plumb CUDA_VISIBLE_DEVICES instead of NVIDIA_VISIBLE_DEVICES because
# the latter does not work in privileged mode that we use in the containers.
environment:
- CUDA_VISIBLE_DEVICES
privileged: true
shm_size: 8gb
# torch==1.3.1+cu100 requires torchvision==0.4.2+cu100
test-gpu-gloo-py3_7-tf1_15_5-keras2_2_4-torch1_3_1-mxnet1_5_1_p0-pyspark3_1_2:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 10.0-devel-ubuntu18.04
CUDNN_VERSION: 7.6.5.32-1+cuda10.1
NCCL_VERSION_OVERRIDE: 2.7.8-1+cuda10.1
PYTHON_VERSION: 3.7
TENSORFLOW_PACKAGE: tensorflow-gpu==1.15.5
KERAS_PACKAGE: keras==2.2.4
PYTORCH_PACKAGE: torch==1.3.1+cu100
PYTORCH_LIGHTNING_PACKAGE: pytorch_lightning==1.1.0
TORCHVISION_PACKAGE: torchvision==0.4.2+cu100
MXNET_PACKAGE: mxnet-cu100==1.5.1.post0
# this is required as we cannot test mxnet-1.6.0.post0 with cpu
test-gpu-gloo-py3_8-tf2_4_3-keras2_3_1-torch1_7_1-mxnet1_6_0_p0-pyspark3_1_2:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 10.1-devel-ubuntu18.04
CUDNN_VERSION: 7.6.5.32-1+cuda10.1
NCCL_VERSION_OVERRIDE: 2.7.8-1+cuda10.1
TENSORFLOW_PACKAGE: tensorflow-gpu==2.4.3
KERAS_PACKAGE: keras==2.3.1
PYTORCH_PACKAGE: torch==1.7.1+cu101
PYTORCH_LIGHTNING_PACKAGE: pytorch_lightning==1.3.8
TORCHVISION_PACKAGE: torchvision==0.8.2+cu101
MXNET_PACKAGE: mxnet-cu101==1.6.0.post0
# we additionally test the previous framework combination (CUDA 10.x) with mxnet 1.7.x
# as mxnet 1.7.x only supports CUDA 10.x, but next framework combination targets CUAA 11.x
test-gpu-gloo-py3_8-tf2_4_3-keras2_3_1-torch1_7_1-mxnet1_7_0_p1-pyspark3_1_2:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 10.1-devel-ubuntu18.04
CUDNN_VERSION: 7.6.5.32-1+cuda10.1
NCCL_VERSION_OVERRIDE: 2.7.8-1+cuda10.1
TENSORFLOW_PACKAGE: tensorflow-gpu==2.4.3
KERAS_PACKAGE: keras==2.3.1
PYTORCH_PACKAGE: torch==1.7.1+cu101
PYTORCH_LIGHTNING_PACKAGE: pytorch_lightning==1.3.8
TORCHVISION_PACKAGE: torchvision==0.8.2+cu101
MXNET_PACKAGE: mxnet-cu101==1.7.0.post1
# we deviate from mxnet1_7_0_p2 here as other frameworks target CUDA 11.x and
# mxnet 1.7.x only supports CUDA 10.x, with mxnet 1.8.x we have CUDA 11.x packages
test-gpu-gloo-py3_8-tf2_5_1-keras_none-torch1_8_1-mxnet1_8_0_p0-pyspark3_1_2:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 11.2.2-devel-ubuntu18.04
CUDNN_VERSION: 8.1.1.33-1+cuda11.2
NCCL_VERSION_OVERRIDE: 2.8.4-1+cuda11.2
TENSORFLOW_PACKAGE: tensorflow-gpu==2.5.1
KERAS_PACKAGE: None
PYTORCH_PACKAGE: torch==1.8.1+cu111
PYTORCH_LIGHTNING_PACKAGE: pytorch_lightning==1.3.8
TORCHVISION_PACKAGE: torchvision==0.9.1+cu111
MXNET_PACKAGE: mxnet-cu112==1.8.0.post0
test-gpu-openmpi-gloo-py3_8-tf2_6_0-keras_none-torch1_9_0-mxnet1_8_0_p0-pyspark3_1_2:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 11.2.2-devel-ubuntu18.04
CUDNN_VERSION: 8.1.1.33-1+cuda11.2
NCCL_VERSION_OVERRIDE: 2.8.4-1+cuda11.2
MPI_KIND: OpenMPI
TENSORFLOW_PACKAGE: tensorflow-gpu==2.6.0
KERAS_PACKAGE: None
PYTORCH_PACKAGE: torch==1.9.0+cu111
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==1.3.8
TORCHVISION_PACKAGE: torchvision==0.10.0+cu111
MXNET_PACKAGE: mxnet-cu112==1.8.0.post0
test-gpu-gloo-py3_8-tfhead-keras_none-torchhead-mxnethead-pyspark3_1_2:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 11.2.2-devel-ubuntu18.04
CUDNN_VERSION: 8.1.1.33-1+cuda11.2
NCCL_VERSION_OVERRIDE: 2.8.4-1+cuda11.2
TENSORFLOW_PACKAGE: tf-nightly-gpu
KERAS_PACKAGE: None
PYTORCH_PACKAGE: torch-nightly-cu111
PYTORCH_LIGHTNING_PACKAGE: pytorch_lightning==1.3.8
TORCHVISION_PACKAGE: torchvision
MXNET_PACKAGE: mxnet-nightly-cu112
test-mixed-openmpi-gloo-py3_8-tf2_6_0-keras_none-torch1_9_0-mxnet1_8_0_p0-pyspark3_1_2:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 11.2.2-devel-ubuntu18.04
CUDNN_VERSION: 8.1.1.33-1+cuda11.2
NCCL_VERSION_OVERRIDE: 2.8.4-1+cuda11.2
MPI_KIND: OpenMPI
TENSORFLOW_PACKAGE: tensorflow-gpu==2.6.0
KERAS_PACKAGE: None
PYTORCH_PACKAGE: torch==1.9.0+cu111
PYTORCH_LIGHTNING_PACKAGE: pytorch_lightning==1.3.8
TORCHVISION_PACKAGE: torchvision==0.10.0+cu111
MXNET_PACKAGE: mxnet-cu112==1.8.0.post0
HOROVOD_BUILD_FLAGS: ""
HOROVOD_MIXED_INSTALL: 1