forked from cloneofsimo/lora
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset.py
311 lines (259 loc) · 9.68 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import random
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
from PIL import Image
from torch import zeros_like
from torch.utils.data import Dataset
from torchvision import transforms
import glob
from .preprocess_files import face_mask_google_mediapipe
OBJECT_TEMPLATE = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
STYLE_TEMPLATE = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
NULL_TEMPLATE = ["{}"]
TEMPLATE_MAP = {
"object": OBJECT_TEMPLATE,
"style": STYLE_TEMPLATE,
"null": NULL_TEMPLATE,
}
def _randomset(lis):
ret = []
for i in range(len(lis)):
if random.random() < 0.5:
ret.append(lis[i])
return ret
def _shuffle(lis):
return random.sample(lis, len(lis))
def _get_cutout_holes(
height,
width,
min_holes=8,
max_holes=32,
min_height=16,
max_height=128,
min_width=16,
max_width=128,
):
holes = []
for _n in range(random.randint(min_holes, max_holes)):
hole_height = random.randint(min_height, max_height)
hole_width = random.randint(min_width, max_width)
y1 = random.randint(0, height - hole_height)
x1 = random.randint(0, width - hole_width)
y2 = y1 + hole_height
x2 = x1 + hole_width
holes.append((x1, y1, x2, y2))
return holes
def _generate_random_mask(image):
mask = zeros_like(image[:1])
holes = _get_cutout_holes(mask.shape[1], mask.shape[2])
for (x1, y1, x2, y2) in holes:
mask[:, y1:y2, x1:x2] = 1.0
if random.uniform(0, 1) < 0.25:
mask.fill_(1.0)
masked_image = image * (mask < 0.5)
return mask, masked_image
class PivotalTuningDatasetCapation(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
tokenizer,
token_map: Optional[dict] = None,
use_template: Optional[str] = None,
size=512,
h_flip=True,
color_jitter=False,
resize=True,
use_mask_captioned_data=False,
use_face_segmentation_condition=False,
train_inpainting=False,
blur_amount: int = 70,
):
self.size = size
self.tokenizer = tokenizer
self.resize = resize
self.train_inpainting = train_inpainting
instance_data_root = Path(instance_data_root)
if not instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = []
self.mask_path = []
assert not (
use_mask_captioned_data and use_template
), "Can't use both mask caption data and template."
# Prepare the instance images
if use_mask_captioned_data:
src_imgs = glob.glob(str(instance_data_root) + "/*src.jpg")
for f in src_imgs:
idx = int(str(Path(f).stem).split(".")[0])
mask_path = f"{instance_data_root}/{idx}.mask.png"
if Path(mask_path).exists():
self.instance_images_path.append(f)
self.mask_path.append(mask_path)
else:
print(f"Mask not found for {f}")
self.captions = open(f"{instance_data_root}/caption.txt").readlines()
else:
possibily_src_images = (
glob.glob(str(instance_data_root) + "/*.jpg")
+ glob.glob(str(instance_data_root) + "/*.png")
+ glob.glob(str(instance_data_root) + "/*.jpeg")
)
possibily_src_images = (
set(possibily_src_images)
- set(glob.glob(str(instance_data_root) + "/*mask.png"))
- set([str(instance_data_root) + "/caption.txt"])
)
self.instance_images_path = list(set(possibily_src_images))
self.captions = [
x.split("/")[-1].split(".")[0] for x in self.instance_images_path
]
assert (
len(self.instance_images_path) > 0
), "No images found in the instance data root."
self.instance_images_path = sorted(self.instance_images_path)
self.use_mask = use_face_segmentation_condition or use_mask_captioned_data
self.use_mask_captioned_data = use_mask_captioned_data
if use_face_segmentation_condition:
for idx in range(len(self.instance_images_path)):
targ = f"{instance_data_root}/{idx}.mask.png"
# see if the mask exists
if not Path(targ).exists():
print(f"Mask not found for {targ}")
print(
"Warning : this will pre-process all the images in the instance data root."
)
if len(self.mask_path) > 0:
print(
"Warning : masks already exists, but will be overwritten."
)
masks = face_mask_google_mediapipe(
[
Image.open(f).convert("RGB")
for f in self.instance_images_path
]
)
for idx, mask in enumerate(masks):
mask.save(f"{instance_data_root}/{idx}.mask.png")
break
for idx in range(len(self.instance_images_path)):
self.mask_path.append(f"{instance_data_root}/{idx}.mask.png")
self.num_instance_images = len(self.instance_images_path)
self.token_map = token_map
self.use_template = use_template
if use_template is not None:
self.templates = TEMPLATE_MAP[use_template]
self._length = self.num_instance_images
self.h_flip = h_flip
self.image_transforms = transforms.Compose(
[
transforms.Resize(
size, interpolation=transforms.InterpolationMode.BILINEAR
)
if resize
else transforms.Lambda(lambda x: x),
transforms.ColorJitter(0.1, 0.1)
if color_jitter
else transforms.Lambda(lambda x: x),
transforms.CenterCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
self.blur_amount = blur_amount
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
instance_image = Image.open(
self.instance_images_path[index % self.num_instance_images]
)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
if self.train_inpainting:
(
example["instance_masks"],
example["instance_masked_images"],
) = _generate_random_mask(example["instance_images"])
if self.use_template:
assert self.token_map is not None
input_tok = list(self.token_map.values())[0]
text = random.choice(self.templates).format(input_tok)
else:
text = self.captions[index % self.num_instance_images].strip()
if self.token_map is not None:
for token, value in self.token_map.items():
text = text.replace(token, value)
print(text)
if self.use_mask:
example["mask"] = (
self.image_transforms(
Image.open(self.mask_path[index % self.num_instance_images])
)
* 0.5
+ 1.0
)
if self.h_flip and random.random() > 0.5:
hflip = transforms.RandomHorizontalFlip(p=1)
example["instance_images"] = hflip(example["instance_images"])
if self.use_mask:
example["mask"] = hflip(example["mask"])
example["instance_prompt_ids"] = self.tokenizer(
text,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example