-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathimg_classification_test.ts
131 lines (109 loc) · 5.05 KB
/
img_classification_test.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {GraphModel} from '@tensorflow/tfjs-converter';
import * as tf from '@tensorflow/tfjs-core';
// tslint:disable-next-line: no-imports-from-dist
import {BROWSER_ENVS, describeWithFlags} from '@tensorflow/tfjs-core/dist/jasmine_util';
import * as automl from './index';
import {fetchImage} from './test_util';
const MODEL_URL =
'https://storage.googleapis.com/tfjs-testing/tfjs-automl/img_classification/model.json';
const DAISY_URL =
'https://storage.googleapis.com/tfjs-testing/tfjs-automl/img_classification/daisy.jpg';
describeWithFlags('image classification', {}, () => {
let model: automl.ImageClassificationModel = null;
beforeAll(async () => {
model = await automl.loadImageClassification(MODEL_URL);
});
it('make prediction from a tensor', async () => {
const img: tf.Tensor3D = tf.zeros([100, 80, 3]);
const predictions = await model.classify(img);
expect(predictions[0].label).toBe('daisy');
expect(predictions[1].label).toBe('dandelion');
expect(predictions[2].label).toBe('roses');
tf.test_util.expectNumbersClose(predictions[0].prob, 0.5806022);
tf.test_util.expectNumbersClose(predictions[1].prob, 0.32249659);
tf.test_util.expectNumbersClose(predictions[2].prob, 0.0283515);
});
it('make prediction from a tensor without cropping', async () => {
const img: tf.Tensor3D = tf.zeros([100, 80, 3]);
const predictions = await model.classify(img, {centerCrop: false});
expect(predictions[0].label).toBe('daisy');
expect(predictions[1].label).toBe('dandelion');
expect(predictions[2].label).toBe('roses');
tf.test_util.expectNumbersClose(predictions[0].prob, 0.5806022);
tf.test_util.expectNumbersClose(predictions[1].prob, 0.32249659);
tf.test_util.expectNumbersClose(predictions[2].prob, 0.0283515);
});
it('no memory leak when making a prediction', async () => {
const img: tf.Tensor3D = tf.zeros([100, 80, 3]);
const numTensorsBefore = tf.memory().numTensors;
await model.classify(img);
const numTensorsAfter = tf.memory().numTensors;
expect(numTensorsAfter).toEqual(numTensorsBefore);
});
it('has access to dictionary', () => {
expect(model.dictionary).toEqual([
'daisy', 'dandelion', 'roses', 'sunflowers', 'tulips'
]);
});
it('can access the underlying graph model', () => {
expect(model.graphModel instanceof GraphModel).toBe(true);
expect(model.graphModel.inputNodes).toEqual(['image']);
expect(model.graphModel.outputNodes).toEqual(['scores']);
const img: tf.Tensor = tf.zeros([1, 224, 224, 3]);
const scores = model.graphModel.predict(img) as tf.Tensor;
expect(scores.shape).toEqual([1, 5]);
});
});
describeWithFlags('image classification browser', BROWSER_ENVS, () => {
let model: automl.ImageClassificationModel = null;
let daisyImg: HTMLImageElement;
beforeAll(async () => {
model = await automl.loadImageClassification(MODEL_URL);
daisyImg = await fetchImage(DAISY_URL);
});
function assertTop3PredsForDaisy(
predictions: automl.ImagePrediction[], centerCrop: boolean) {
const probs = centerCrop ? [0.9310929, 0.0273733, 0.0130559] :
[0.8411523, 0.0729438, 0.03020708];
expect(predictions[0].label).toBe('daisy');
tf.test_util.expectNumbersClose(predictions[0].prob, probs[0]);
expect(predictions[1].label).toBe('dandelion');
tf.test_util.expectNumbersClose(predictions[1].prob, probs[1]);
expect(predictions[2].label).toBe('roses');
tf.test_util.expectNumbersClose(predictions[2].prob, probs[2]);
}
it('make prediction from an image element', async () => {
const predictions = await model.classify(daisyImg);
assertTop3PredsForDaisy(predictions, true /* centerCrop */);
});
it('make prediction from a canvas element', async () => {
// Copy the pixels from the image to a canvas.
const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d');
canvas.width = daisyImg.width;
canvas.height = daisyImg.height;
ctx.drawImage(daisyImg, 0, 0, daisyImg.width, daisyImg.height);
const predictions = await model.classify(canvas);
assertTop3PredsForDaisy(predictions, true /* centerCrop */);
});
it('make prediction without center cropping', async () => {
const predictions = await model.classify(daisyImg, {centerCrop: false});
assertTop3PredsForDaisy(predictions, false /* centerCrop */);
});
});