Note: Functions taking Tensor
arguments can also take anything accepted by
tf.convert_to_tensor
.
[TOC]
Tensorflow supports a SparseTensor
representation for data that is sparse
in multiple dimensions. Contrast this representation with IndexedSlices
,
which is efficient for representing tensors that are sparse in their first
dimension, and dense along all other dimensions.
Represents a sparse tensor.
Tensorflow represents a sparse tensor as three separate dense tensors:
indices
, values
, and shape
. In Python, the three tensors are
collected into a SparseTensor
class for ease of use. If you have separate
indices
, values
, and shape
tensors, wrap them in a SparseTensor
object before passing to the ops below.
Concretely, the sparse tensor SparseTensor(indices, values, shape)
is
indices
: A 2-D int64 tensor of shape[N, ndims]
.values
: A 1-D tensor of any type and shape[N]
.shape
: A 1-D int64 tensor of shape[ndims]
.
where N
and ndims
are the number of values, and number of dimensions in
the SparseTensor
respectively.
The corresponding dense tensor satisfies
dense.shape = shape
dense[tuple(indices[i])] = values[i]
By convention, indices
should be sorted in row-major order (or equivalently
lexicographic order on the tuples indices[i]
). This is not enforced when
SparseTensor
objects are constructed, but most ops assume correct ordering.
If the ordering of sparse tensor st
is wrong, a fixed version can be
obtained by calling tf.sparse_reorder(st)
.
Example: The sparse tensor
SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], shape=[3, 4])
represents the dense tensor
[[1, 0, 0, 0]
[0, 0, 2, 0]
[0, 0, 0, 0]]
Creates a SparseTensor
.
indices
: A 2-D int64 tensor of shape[N, ndims]
.values
: A 1-D tensor of any type and shape[N]
.shape
: A 1-D int64 tensor of shape[ndims]
.
A SparseTensor
The indices of non-zero values in the represented dense tensor.
A 2-D Tensor of int64 with shape [N, ndims]
, where N
is the
number of non-zero values in the tensor, and ndims
is the rank.
The non-zero values in the represented dense tensor.
A 1-D Tensor of any data type.
A 1-D Tensor of int64 representing the shape of the dense tensor.
The DType
of elements in this tensor.
The Operation
that produces values
as an output.
The Graph
that contains the index, value, and shape tensors.
Evaluates this sparse tensor in a Session
.
Calling this method will execute all preceding operations that produce the inputs needed for the operation that produces this tensor.
N.B. Before invoking SparseTensor.eval()
, its graph must have been
launched in a session, and either a default session must be
available, or session
must be specified explicitly.
feed_dict
: A dictionary that mapsTensor
objects to feed values. SeeSession.run()
for a description of the valid feed values.session
: (Optional.) TheSession
to be used to evaluate this sparse tensor. If none, the default session will be used.
A SparseTensorValue
object.
SparseTensorValue(indices, values, shape)
Alias for field number 0
Alias for field number 2
Alias for field number 1
tf.sparse_to_dense(sparse_indices, output_shape, sparse_values, default_value=0, validate_indices=True, name=None)
{#sparse_to_dense}
Converts a sparse representation into a dense tensor.
Builds an array dense
with shape output_shape
such that
# If sparse_indices is scalar
dense[i] = (i == sparse_indices ? sparse_values : default_value)
# If sparse_indices is a vector, then for each i
dense[sparse_indices[i]] = sparse_values[i]
# If sparse_indices is an n by d matrix, then for each i in [0, n)
dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]
All other values in dense
are set to default_value
. If sparse_values
is a scalar, all sparse indices are set to this single value.
Indices should be sorted in lexicographic order, and indices must not
contain any repeats. If validate_indices
is True, these properties
are checked during execution.
sparse_indices
: A 0-D, 1-D, or 2-DTensor
of typeint32
orint64
.sparse_indices[i]
contains the complete index wheresparse_values[i]
will be placed.output_shape
: A 1-DTensor
of the same type assparse_indices
. Shape of the dense output tensor.sparse_values
: A 0-D or 1-DTensor
. Values corresponding to each row ofsparse_indices
, or a scalar value to be used for all sparse indices.default_value
: A 0-DTensor
of the same type assparse_values
. Value to set for indices not specified insparse_indices
. Defaults to zero.validate_indices
: A boolean value. If True, indices are checked to make sure they are sorted in lexicographic order and that there are no repeats.name
: A name for the operation (optional).
Dense Tensor
of shape output_shape
. Has the same type as
sparse_values
.
tf.sparse_tensor_to_dense(sp_input, default_value=0, validate_indices=True, name=None)
{#sparse_tensor_to_dense}
Converts a SparseTensor
into a dense tensor.
This op is a convenience wrapper around sparse_to_dense
for SparseTensor
s.
For example, if sp_input
has shape [3, 5]
and non-empty string values:
[0, 1]: a
[0, 3]: b
[2, 0]: c
and default_value
is x
, then the output will be a dense [3, 5]
string tensor with values:
[[x a x b x]
[x x x x x]
[c x x x x]]
Indices must be without repeats. This is only tested if validate_indices is True.
sp_input
: The inputSparseTensor
.default_value
: Scalar value to set for indices not specified insp_input
. Defaults to zero.validate_indices
: A boolean value. IfTrue
, indices are checked to make sure they are sorted in lexicographic order and that there are no repeats.name
: A name prefix for the returned tensors (optional).
A dense tensor with shape sp_input.shape
and values specified by
the non-empty values in sp_input
. Indices not in sp_input
are assigned
default_value
.
TypeError
: Ifsp_input
is not aSparseTensor
.
Converts a SparseTensor
of ids into a dense bool indicator tensor.
The last dimension of sp_input.indices
is discarded and replaced with
the values of sp_input
. If sp_input.shape = [D0, D1, ..., Dn, K]
, then
output.shape = [D0, D1, ..., Dn, vocab_size]
, where
output[d_0, d_1, ..., d_n, sp_input[d_0, d_1, ..., d_n, k]] = True
and False elsewhere in output
.
For example, if sp_input.shape = [2, 3, 4]
with non-empty values:
[0, 0, 0]: 0
[0, 1, 0]: 10
[1, 0, 3]: 103
[1, 1, 2]: 150
[1, 1, 3]: 149
[1, 1, 4]: 150
[1, 2, 1]: 121
and vocab_size = 200
, then the output will be a [2, 3, 200]
dense bool
tensor with False everywhere except at positions
(0, 0, 0), (0, 1, 10), (1, 0, 103), (1, 1, 149), (1, 1, 150),
(1, 2, 121).
Note that repeats are allowed in the input SparseTensor.
This op is useful for converting SparseTensor
s into dense formats for
compatibility with ops that expect dense tensors.
The input SparseTensor
must be in row-major order.
sp_input
: ASparseTensor
withvalues
property of typeint32
orint64
.vocab_size
: A scalar int64 Tensor (or Python int) containing the new size of the last dimension,all(0 <= sp_input.values < vocab_size)
.name
: A name prefix for the returned tensors (optional)
A dense bool indicator tensor representing the indices with specified value.
TypeError
: Ifsp_input
is not aSparseTensor
.
Combines a batch of feature ids and values into a single SparseTensor
.
The most common use case for this function occurs when feature ids and
their corresponding values are stored in Example
protos on disk.
parse_example
will return a batch of ids and a batch of values, and this
function joins them into a single logical SparseTensor
for use in
functions such as sparse_tensor_dense_matmul
, sparse_to_dense
, etc.
The SparseTensor
returned by this function has the following properties:
indices
is equivalent tosp_ids.indices
with the last dimension discarded and replaced withsp_ids.values
.values
is simplysp_values.values
.- If
sp_ids.shape = [D0, D1, ..., Dn, K]
, thenoutput.shape = [D0, D1, ..., Dn, vocab_size]
.
For example, consider the following feature vectors:
vector1 = [-3, 0, 0, 0, 0, 0] vector2 = [ 0, 1, 0, 4, 1, 0] vector3 = [ 5, 0, 0, 9, 0, 0]
These might be stored sparsely in the following Example protos by storing only the feature ids (column number if the vectors are treated as a matrix) of the non-zero elements and the corresponding values:
examples = [Example(features={ "ids": Feature(int64_list=Int64List(value=[0])), "values": Feature(float_list=FloatList(value=[-3]))}), Example(features={ "ids": Feature(int64_list=Int64List(value=[1, 4, 3])), "values": Feature(float_list=FloatList(value=[1, 1, 4]))}), Example(features={ "ids": Feature(int64_list=Int64List(value=[0, 3])), "values": Feature(float_list=FloatList(value=[5, 9]))})]
The result of calling parse_example on these examples will produce a
dictionary with entries for "ids" and "values". Passing those two objects
to this function along with vocab_size=6, will produce a SparseTensor
that
sparsely represents all three instances. Namely, the indices
property will
contain the coordinates of the non-zero entries in the feature matrix (the
first dimension is the row number in the matrix, i.e., the index within the
batch, and the second dimension is the column number, i.e., the feature id);
values
will contain the actual values. shape
will be the shape of the
original matrix, i.e., (3, 6). For our example above, the output will be
equal to:
SparseTensor(indices=[[0, 0], [1, 1], [1, 3], [1, 4], [2, 0], [2, 3]], values=[-3, 1, 4, 1, 5, 9], shape=[3, 6])
sp_ids
: ASparseTensor
withvalues
property of typeint32
orint64
.sp_values
: ASparseTensor
of any type.vocab_size
: A scalarint64
Tensor (or Python int) containing the new size of the last dimension,all(0 <= sp_ids.values < vocab_size)
.name
: A name prefix for the returned tensors (optional)
A SparseTensor
compactly representing a batch of feature ids and values,
useful for passing to functions that expect such a SparseTensor
.
TypeError
: Ifsp_ids
orsp_values
are not aSparseTensor
.
Concatenates a list of SparseTensor
along the specified dimension.
Concatenation is with respect to the dense versions of each sparse input.
It is assumed that each inputs is a SparseTensor
whose elements are ordered
along increasing dimension number.
If expand_nonconcat_dim is False, all inputs' shapes must match, except for the concat dimension. If expand_nonconcat_dim is True, then inputs' shapes are allowd to vary among all inputs.
The indices
, values
, and shapes
lists must have the same length.
If expand_nonconcat_dim is False, then the output shape is identical to the inputs', except along the concat dimension, where it is the sum of the inputs' sizes along that dimension.
If expand_nonconcat_dim is True, then the output shape along the non-concat dimensions will be expand to be the largest among all inputs, and it is the sum of the inputs sizes along the concat dimension.
The output elements will be resorted to preserve the sort order along increasing dimension number.
This op runs in O(M log M)
time, where M
is the total number of non-empty
values across all inputs. This is due to the need for an internal sort in
order to concatenate efficiently across an arbitrary dimension.
For example, if concat_dim = 1
and the inputs are
sp_inputs[0]: shape = [2, 3]
[0, 2]: "a"
[1, 0]: "b"
[1, 1]: "c"
sp_inputs[1]: shape = [2, 4]
[0, 1]: "d"
[0, 2]: "e"
then the output will be
shape = [2, 7]
[0, 2]: "a"
[0, 4]: "d"
[0, 5]: "e"
[1, 0]: "b"
[1, 1]: "c"
Graphically this is equivalent to doing
[ a] concat [ d e ] = [ a d e ]
[b c ] [ ] [b c ]
Another example, if 'concat_dim = 1' and the inputs are
sp_inputs[0]: shape = [3, 3]
[0, 2]: "a"
[1, 0]: "b"
[2, 1]: "c"
sp_inputs[1]: shape = [2, 4]
[0, 1]: "d"
[0, 2]: "e"
if expand_nonconcat_dim = False, this will result in an error. But if expand_nonconcat_dim = True, this will result in:
shape = [3, 7]
[0, 2]: "a"
[0, 4]: "d"
[0, 5]: "e"
[1, 0]: "b"
[2, 1]: "c"
Graphically this is equivalent to doing
[ a] concat [ d e ] = [ a d e ]
[b ] [ ] [b ]
[ c ] [ c ]
concat_dim
: Dimension to concatenate along.sp_inputs
: List ofSparseTensor
to concatenate.name
: A name prefix for the returned tensors (optional).expand_nonconcat_dim
: Whether to allow the expansion in the non-concat dimensions. Defaulted to False.
A SparseTensor
with the concatenated output.
TypeError
: Ifsp_inputs
is not a list ofSparseTensor
.
Reorders a SparseTensor
into the canonical, row-major ordering.
Note that by convention, all sparse ops preserve the canonical ordering along increasing dimension number. The only time ordering can be violated is during manual manipulation of the indices and values to add entries.
Reordering does not affect the shape of the SparseTensor
.
For example, if sp_input
has shape [4, 5]
and indices
/ values
:
[0, 3]: b
[0, 1]: a
[3, 1]: d
[2, 0]: c
then the output will be a SparseTensor
of shape [4, 5]
and
indices
/ values
:
[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d
sp_input
: The inputSparseTensor
.name
: A name prefix for the returned tensors (optional)
A SparseTensor
with the same shape and non-empty values, but in
canonical ordering.
TypeError
: Ifsp_input
is not aSparseTensor
.
Split a SparseTensor
into num_split
tensors along split_dim
.
If the sp_input.shape[split_dim]
is not an integer multiple of num_split
each slice starting from 0:shape[split_dim] % num_split
gets extra one
dimension. For example, if split_dim = 1
and num_split = 2
and the
input is:
input_tensor = shape = [2, 7]
[ a d e ]
[b c ]
Graphically the output tensors are:
output_tensor[0] =
[ a ]
[b c ]
output_tensor[1] =
[ d e ]
[ ]
split_dim
: A 0-Dint32
Tensor
. The dimension along which to split.num_split
: A Python integer. The number of ways to split.sp_input
: TheSparseTensor
to split.name
: A name for the operation (optional).
num_split
SparseTensor
objects resulting from splitting value
.
TypeError
: Ifsp_input
is not aSparseTensor
.
Retains specified non-empty values within a SparseTensor
.
For example, if sp_input
has shape [4, 5]
and 4 non-empty string values:
[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d
and to_retain = [True, False, False, True]
, then the output will
be a SparseTensor
of shape [4, 5]
with 2 non-empty values:
[0, 1]: a
[3, 1]: d
sp_input
: The inputSparseTensor
withN
non-empty elements.to_retain
: A bool vector of lengthN
withM
true values.
A SparseTensor
with the same shape as the input and M
non-empty
elements corresponding to the true positions in to_retain
.
TypeError
: Ifsp_input
is not aSparseTensor
.
Resets the shape of a SparseTensor
with indices and values unchanged.
If new_shape
is None, returns a copy of sp_input
with its shape reset
to the tight bounding box of sp_input
.
If new_shape
is provided, then it must be larger or equal in all dimensions
compared to the shape of sp_input
. When this condition is met, the returned
SparseTensor will have its shape reset to new_shape
and its indices and
values unchanged from that of sp_input.
For example:
Consider a sp_input
with shape [2, 3, 5]:
[0, 0, 1]: a
[0, 1, 0]: b
[0, 2, 2]: c
[1, 0, 3]: d
-
It is an error to set
new_shape
as [3, 7] since this represents a rank-2 tensor whilesp_input
is rank-3. This is either a ValueError during graph construction (if both shapes are known) or an OpError during run time. -
Setting
new_shape
as [2, 3, 6] will be fine as this shape is larger or eqaul in every dimension compared to the original shape [2, 3, 5]. -
On the other hand, setting new_shape as [2, 3, 4] is also an error: The third dimension is smaller than the original shape [2, 3, 5] (and an
InvalidArgumentError
will be raised). -
If
new_shape
is None, the returned SparseTensor will have a shape [2, 3, 4], which is the tight bounding box ofsp_input
.
sp_input
: The inputSparseTensor
.new_shape
: None or a vector representing the new shape for the returnedSpraseTensor
.
A SparseTensor
indices and values unchanged from input_sp
. Its shape is
new_shape
if that is set. Otherwise it is the tight bounding box of
input_sp
TypeError
: Ifsp_input
is not aSparseTensor
.ValueError
: Ifnew_shape
represents a tensor with a different rank from that ofsp_input
(if shapes are known when graph is constructed).OpError
:- If
new_shape
has dimension sizes that are too small. - If shapes are not known during graph construction time, and during run time it is found out that the ranks do not match.
- If
Fills empty rows in the input 2-D SparseTensor
with a default value.
This op adds entries with the specified default_value
at index
[row, 0]
for any row in the input that does not already have a value.
For example, suppose sp_input
has shape [5, 6]
and non-empty values:
[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d
Rows 1 and 4 are empty, so the output will be of shape [5, 6]
with values:
[0, 1]: a
[0, 3]: b
[1, 0]: default_value
[2, 0]: c
[3, 1]: d
[4, 0]: default_value
Note that the input may have empty columns at the end, with no effect on this op.
The output SparseTensor
will be in row-major order and will have the
same shape as the input.
This op also returns an indicator vector such that
empty_row_indicator[i] = True iff row i was an empty row.
sp_input
: ASparseTensor
with shape[N, M]
.default_value
: The value to fill for empty rows, with the same type assp_input.
name
: A name prefix for the returned tensors (optional)
sp_ordered_output
: ASparseTensor
with shape[N, M]
, and with all empty rows filled in withdefault_value
.empty_row_indicator
: A bool vector of lengthN
indicating whether each input row was empty.
TypeError
: Ifsp_input
is not aSparseTensor
.
Computes the sum of elements across dimensions of a SparseTensor.
This Op takes a SparseTensor and is the sparse counterpart to
tf.reduce_sum()
. In particular, this Op also returns a dense Tensor
instead of a sparse one.
Reduces sp_input
along the dimensions given in reduction_axes
. Unless
keep_dims
is true, the rank of the tensor is reduced by 1 for each entry in
reduction_axes
. If keep_dims
is true, the reduced dimensions are retained
with length 1.
If reduction_axes
has no entries, all dimensions are reduced, and a tensor
with a single element is returned. Additionally, the axes can be negative,
similar to the indexing rules in Python.
For example:
# 'x' represents [[1, ?, 1]
# [?, 1, ?]]
# where ? is implictly-zero.
tf.sparse_reduce_sum(x) ==> 3
tf.sparse_reduce_sum(x, 0) ==> [1, 1, 1]
tf.sparse_reduce_sum(x, 1) ==> [2, 1] # Can also use -1 as the axis.
tf.sparse_reduce_sum(x, 1, keep_dims=True) ==> [[2], [1]]
tf.sparse_reduce_sum(x, [0, 1]) ==> 3
sp_input
: The SparseTensor to reduce. Should have numeric type.reduction_axes
: The dimensions to reduce; list or scalar. IfNone
(the default), reduces all dimensions.keep_dims
: If true, retain reduced dimensions with length 1.
The reduced Tensor.
Adds two tensors, at least one of each is a SparseTensor
.
If one SparseTensor
and one Tensor
are passed in, returns a Tensor
. If
both arguments are SparseTensor
s, this returns a SparseTensor
. The order
of arguments does not matter. Use vanilla tf.add()
for adding two dense
Tensor
s.
The indices of any input SparseTensor
are assumed ordered in standard
lexicographic order. If this is not the case, before this step run
SparseReorder
to restore index ordering.
If both arguments are sparse, we perform "clipping" as follows. By default,
if two values sum to zero at some index, the output SparseTensor
would still
include that particular location in its index, storing a zero in the
corresponding value slot. To override this, callers can specify thresh
,
indicating that if the sum has a magnitude strictly smaller than thresh
, its
corresponding value and index would then not be included. In particular,
thresh == 0.0
(default) means everything is kept and actual thresholding
happens only for a positive value.
For example, suppose the logical sum of two sparse operands is (densified):
[ 2]
[.1 0]
[ 6 -.2]
Then,
- thresh == 0 (the default): all 5 index/value pairs will be returned.
- thresh == 0.11: only .1 and 0 will vanish, and the remaining three
index/value pairs will be returned.
- thresh == 0.21: .1, 0, and -.2 will vanish.
a
: The first operand;SparseTensor
orTensor
.b
: The second operand;SparseTensor
orTensor
. At least one operand must be sparse.thresh
: A 0-DTensor
. The magnitude threshold that determines if an output value/index pair takes space. Its dtype should match that of the values if they are real; if the latter are complex64/complex128, then the dtype should be float32/float64, correspondingly.
A SparseTensor
or a Tensor
, representing the sum.
TypeError
: If botha
andb
areTensor
s. Usetf.add()
instead.
Applies softmax to a batched N-D SparseTensor
.
The inputs represent an N-D SparseTensor with logical shape [..., B, C]
(where N >= 2
), and with indices sorted in the canonical lexicographic
order.
This op is equivalent to applying the normal tf.nn.softmax()
to each
innermost logical submatrix with shape [B, C]
, but with the catch that the
implicitly zero elements do not participate. Specifically, the algorithm is
equivalent to:
(1) Applies tf.nn.softmax()
to a densified view of each innermost
submatrix with shape [B, C]
, along the size-C dimension;
(2) Masks out the original implicitly-zero locations;
(3) Renormalizes the remaining elements.
Hence, the SparseTensor
result has exactly the same non-zero indices and
shape.
Example:
# First batch:
# [? e.]
# [1. ? ]
# Second batch:
# [e ? ]
# [e e ]
shape = [2, 2, 2] # 3-D SparseTensor
values = np.asarray([[[0., np.e], [1., 0.]], [[np.e, 0.], [np.e, np.e]]])
indices = np.vstack(np.where(values)).astype(np.int64).T
result = tf.sparse_softmax(tf.SparseTensor(indices, values, shape))
# ...returning a 3-D SparseTensor, equivalent to:
# [? 1.] [1 ?]
# [1. ? ] and [.5 .5]
# where ? means implicitly zero.
sp_input
: N-DSparseTensor
, whereN >= 2
.name
: optional name of the operation.
output
: N-DSparseTensor
representing the results.
tf.sparse_tensor_dense_matmul(sp_a, b, adjoint_a=False, adjoint_b=False, name=None)
{#sparse_tensor_dense_matmul}
Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
No validity checking is performed on the indices of A. However, the following input format is recommended for optimal behavior:
if adjoint_a == false: A should be sorted in lexicographically increasing order. Use sparse_reorder if you're not sure. if adjoint_a == true: A should be sorted in order of increasing dimension 1 (i.e., "column major" order instead of "row major" order).
Deciding when to use sparse_tensor_dense_matmul vs. matmul(sp_a=True):
There are a number of questions to ask in the decision process, including:
- Will the SparseTensor A fit in memory if densified?
- Is the column count of the product large (>> 1)?
- Is the density of A larger than approximately 15%?
If the answer to several of these questions is yes, consider converting the SparseTensor to a dense one and using tf.matmul with sp_a=True.
This operation tends to perform well when A is more sparse, if the column size of the product is small (e.g. matrix-vector multiplication), if sp_a.shape takes on large values.
Below is a rough speed comparison between sparse_tensor_dense_matmul, labelled 'sparse', and matmul(sp_a=True), labelled 'dense'. For purposes of the comparison, the time spent converting from a SparseTensor to a dense Tensor is not included, so it is overly conservative with respect to the time ratio.
Benchmark system: CPU: Intel Ivybridge with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:12MB GPU: NVidia Tesla k40c
Compiled with: -c opt --config=cuda --copt=-mavx
A sparse [m, k] with % nonzero values between 1% and 80%
B dense [k, n]
% nnz n gpu m k dt(dense) dt(sparse) dt(sparse)/dt(dense)
0.01 1 True 100 100 0.000221166 0.00010154 0.459112
0.01 1 True 100 1000 0.00033858 0.000109275 0.322745
0.01 1 True 1000 100 0.000310557 9.85661e-05 0.317385
0.01 1 True 1000 1000 0.0008721 0.000100875 0.115669
0.01 1 False 100 100 0.000208085 0.000107603 0.51711
0.01 1 False 100 1000 0.000327112 9.51118e-05 0.290762
0.01 1 False 1000 100 0.000308222 0.00010345 0.335635
0.01 1 False 1000 1000 0.000865721 0.000101397 0.117124
0.01 10 True 100 100 0.000218522 0.000105537 0.482958
0.01 10 True 100 1000 0.000340882 0.000111641 0.327506
0.01 10 True 1000 100 0.000315472 0.000117376 0.372064
0.01 10 True 1000 1000 0.000905493 0.000123263 0.136128
0.01 10 False 100 100 0.000221529 9.82571e-05 0.44354
0.01 10 False 100 1000 0.000330552 0.000112615 0.340687
0.01 10 False 1000 100 0.000341277 0.000114097 0.334324
0.01 10 False 1000 1000 0.000819944 0.000120982 0.147549
0.01 25 True 100 100 0.000207806 0.000105977 0.509981
0.01 25 True 100 1000 0.000322879 0.00012921 0.400181
0.01 25 True 1000 100 0.00038262 0.000141583 0.370035
0.01 25 True 1000 1000 0.000865438 0.000202083 0.233504
0.01 25 False 100 100 0.000209401 0.000104696 0.499979
0.01 25 False 100 1000 0.000321161 0.000130737 0.407076
0.01 25 False 1000 100 0.000377012 0.000136801 0.362856
0.01 25 False 1000 1000 0.000861125 0.00020272 0.235413
0.2 1 True 100 100 0.000206952 9.69219e-05 0.46833
0.2 1 True 100 1000 0.000348674 0.000147475 0.422959
0.2 1 True 1000 100 0.000336908 0.00010122 0.300439
0.2 1 True 1000 1000 0.001022 0.000203274 0.198898
0.2 1 False 100 100 0.000207532 9.5412e-05 0.459746
0.2 1 False 100 1000 0.000356127 0.000146824 0.41228
0.2 1 False 1000 100 0.000322664 0.000100918 0.312764
0.2 1 False 1000 1000 0.000998987 0.000203442 0.203648
0.2 10 True 100 100 0.000211692 0.000109903 0.519165
0.2 10 True 100 1000 0.000372819 0.000164321 0.440753
0.2 10 True 1000 100 0.000338651 0.000144806 0.427596
0.2 10 True 1000 1000 0.00108312 0.000758876 0.70064
0.2 10 False 100 100 0.000215727 0.000110502 0.512231
0.2 10 False 100 1000 0.000375419 0.0001613 0.429653
0.2 10 False 1000 100 0.000336999 0.000145628 0.432132
0.2 10 False 1000 1000 0.00110502 0.000762043 0.689618
0.2 25 True 100 100 0.000218705 0.000129913 0.594009
0.2 25 True 100 1000 0.000394794 0.00029428 0.745402
0.2 25 True 1000 100 0.000404483 0.0002693 0.665788
0.2 25 True 1000 1000 0.0012002 0.00194494 1.62052
0.2 25 False 100 100 0.000221494 0.0001306 0.589632
0.2 25 False 100 1000 0.000396436 0.000297204 0.74969
0.2 25 False 1000 100 0.000409346 0.000270068 0.659754
0.2 25 False 1000 1000 0.00121051 0.00193737 1.60046
0.5 1 True 100 100 0.000214981 9.82111e-05 0.456836
0.5 1 True 100 1000 0.000415328 0.000223073 0.537101
0.5 1 True 1000 100 0.000358324 0.00011269 0.314492
0.5 1 True 1000 1000 0.00137612 0.000437401 0.317851
0.5 1 False 100 100 0.000224196 0.000101423 0.452386
0.5 1 False 100 1000 0.000400987 0.000223286 0.556841
0.5 1 False 1000 100 0.000368825 0.00011224 0.304318
0.5 1 False 1000 1000 0.00136036 0.000429369 0.31563
0.5 10 True 100 100 0.000222125 0.000112308 0.505608
0.5 10 True 100 1000 0.000461088 0.00032357 0.701753
0.5 10 True 1000 100 0.000394624 0.000225497 0.571422
0.5 10 True 1000 1000 0.00158027 0.00190898 1.20801
0.5 10 False 100 100 0.000232083 0.000114978 0.495418
0.5 10 False 100 1000 0.000454574 0.000324632 0.714146
0.5 10 False 1000 100 0.000379097 0.000227768 0.600817
0.5 10 False 1000 1000 0.00160292 0.00190168 1.18638
0.5 25 True 100 100 0.00023429 0.000151703 0.647501
0.5 25 True 100 1000 0.000497462 0.000598873 1.20386
0.5 25 True 1000 100 0.000460778 0.000557038 1.20891
0.5 25 True 1000 1000 0.00170036 0.00467336 2.74845
0.5 25 False 100 100 0.000228981 0.000155334 0.678371
0.5 25 False 100 1000 0.000496139 0.000620789 1.25124
0.5 25 False 1000 100 0.00045473 0.000551528 1.21287
0.5 25 False 1000 1000 0.00171793 0.00467152 2.71927
0.8 1 True 100 100 0.000222037 0.000105301 0.47425
0.8 1 True 100 1000 0.000410804 0.000329327 0.801664
0.8 1 True 1000 100 0.000349735 0.000131225 0.375212
0.8 1 True 1000 1000 0.00139219 0.000677065 0.48633
0.8 1 False 100 100 0.000214079 0.000107486 0.502085
0.8 1 False 100 1000 0.000413746 0.000323244 0.781261
0.8 1 False 1000 100 0.000348983 0.000131983 0.378193
0.8 1 False 1000 1000 0.00136296 0.000685325 0.50282
0.8 10 True 100 100 0.000229159 0.00011825 0.516017
0.8 10 True 100 1000 0.000498845 0.000532618 1.0677
0.8 10 True 1000 100 0.000383126 0.00029935 0.781336
0.8 10 True 1000 1000 0.00162866 0.00307312 1.88689
0.8 10 False 100 100 0.000230783 0.000124958 0.541452
0.8 10 False 100 1000 0.000493393 0.000550654 1.11606
0.8 10 False 1000 100 0.000377167 0.000298581 0.791642
0.8 10 False 1000 1000 0.00165795 0.00305103 1.84024
0.8 25 True 100 100 0.000233496 0.000175241 0.75051
0.8 25 True 100 1000 0.00055654 0.00102658 1.84458
0.8 25 True 1000 100 0.000463814 0.000783267 1.68875
0.8 25 True 1000 1000 0.00186905 0.00755344 4.04132
0.8 25 False 100 100 0.000240243 0.000175047 0.728625
0.8 25 False 100 1000 0.000578102 0.00104499 1.80763
0.8 25 False 1000 100 0.000485113 0.000776849 1.60138
0.8 25 False 1000 1000 0.00211448 0.00752736 3.55992
sp_a
: SparseTensor A, of rank 2.b
: A dense Matrix with the same dtype as sp_a.adjoint_a
: Use the adjoint of A in the matrix multiply. If A is complex, this is transpose(conj(A)). Otherwise it's transpose(A).adjoint_b
: Use the adjoint of B in the matrix multiply. If B is complex, this is transpose(conj(B)). Otherwise it's transpose(B).name
: A name prefix for the returned tensors (optional)
A dense matrix (pseudo-code in dense np.matrix notation): A = A.H if adjoint_a else A B = B.H if adjoint_b else B return A*B