forked from BR-IDL/PaddleViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_erasing.py
118 lines (107 loc) · 4.76 KB
/
random_erasing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Random Erasing for image tensor"""
import random
import math
import paddle
def _get_pixels(per_pixel, rand_color, patch_size, dtype="float32"):
if per_pixel:
return paddle.normal(shape=patch_size).astype(dtype)
if rand_color:
return paddle.normal(shape=(patch_size[0], 1, 1)).astype(dtype)
return paddle.zeros((patch_size[0], 1, 1)).astype(dtype)
class RandomErasing(object):
"""
Args:
prob: probability of performing random erasing
min_area: Minimum percentage of erased area wrt input image area
max_area: Maximum percentage of erased area wrt input image area
min_aspect: Minimum aspect ratio of earsed area
max_aspect: Maximum aspect ratio of earsed area
mode: pixel color mode, in ['const', 'rand', 'pixel']
'const' - erase block is constant valued 0 for all channels
'rand' - erase block is valued random color (same per-channel)
'pixel' - erase block is vauled random color per pixel
min_count: Minimum # of ereasing blocks per image.
max_count: Maximum # of ereasing blocks per image. Area per box is scaled by count
per-image count is randomly chosen between min_count to max_count
"""
def __init__(self, prob=0.5, min_area=0.02, max_area=1/3, min_aspect=0.3, max_aspect=None,
mode='const', min_count=1, max_count=None, num_splits=0):
self.prob = prob
self.min_area = min_area
self.max_area = max_area
max_aspect = max_aspect or 1 / min_aspect
self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect))
self.min_count = min_count
self.max_count = max_count or min_count
self.num_splits = num_splits
mode = mode.lower()
self.rand_color = False
self.per_pixel = False
if mode == "rand":
self.rand_color = True
elif mode == "pixel":
self.per_pixel = True
else:
assert not mode or mode == "const"
def _erase(self, img, chan, img_h, img_w, dtype):
if random.random() > self.prob:
return
area = img_h * img_w
count = self.min_count if self.min_count == self.max_count else \
random.randint(self.min_count, self.max_count)
for _ in range(count):
for attempt in range(10):
target_area = random.uniform(self.min_area, self.max_area) * area / count
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img_w and h < img_h:
top = random.randint(0, img_h - h)
left = random.randint(0, img_w - w)
img[:, top:top+h, left:left+w] = _get_pixels(
self.per_pixel, self.rand_color, (chan, h, w),
dtype=dtype)
break
def __call__(self, input):
if len(input.shape) == 3:
self._erase(input, *input.shape, input.dtype)
else:
batch_size, chan, img_h, img_w = input.shape
batch_start = batch_size // self.num_splits if self.num_splits > 1 else 0
for i in range(batch_start, batch_size):
self._erase(input[i], chan, img_h, img_w, input.dtype)
return input
#def main():
# re = RandomErasing(prob=1.0, min_area=0.2, max_area=0.6, mode='rand')
# #re = RandomErasing(prob=1.0, min_area=0.2, max_area=0.6, mode='const')
# #re = RandomErasing(prob=1.0, min_area=0.2, max_area=0.6, mode='pixel')
# import PIL.Image as Image
# import numpy as np
# paddle.set_device('cpu')
# img = paddle.to_tensor(np.asarray(Image.open('./lenna.png'))).astype('float32')
# img = img / 255.0
# img = paddle.transpose(img, [2, 0, 1])
# new_img = re(img)
# new_img = new_img * 255.0
# new_img = paddle.transpose(new_img, [1, 2, 0])
# new_img = new_img.cpu().numpy()
# new_img = Image.fromarray(new_img.astype('uint8'))
# new_img.save('./res.png')
#
#
#
#if __name__ == "__main__":
# main()