Scaling Local Self-Attention for Parameter Efficient Visual Backbones, arxiv
PaddlePaddle training/validation code and pretrained models for HaloNet.
The official pytorch implementation is N/A.
This implementation is developed by PaddleViT.
- Update (2021-12-09): Initial code and ported weights are released.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
halonet26t | 79.10 | 94.31 | 12.5M | 3.2G | 256 | 0.95 | bicubic | google/baidu(ednv) |
halonet50ts | 81.65 | 95.61 | 22.8M | 5.1G | 256 | 0.94 | bicubic | google/baidu(3j9e) |
*The results are evaluated on ImageNet2012 validation set.
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./halonet_50ts_256.pdparams
, to use the halonet_50ts_256
model in python:
from config import get_config
from halonet import build_halonet
# config files in ./configs/
config = get_config('./configs/halonet_50ts_256.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./halonet_50ts_256')
model.set_dict(model_state_dict)
To evaluate HaloNet model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/halonet_50ts_256.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./halonet_50ts_256'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/halonet_50ts_256.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./halonet_50ts_256'
To train the MobileVit XXS model on ImageNet2012 with single GPU, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_singel_gpu.py \
-cfg='./configs/halonet_50ts_256.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/halonet_50ts_256.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
(coming soon)
@inproceedings{vaswani2021scaling,
title={Scaling local self-attention for parameter efficient visual backbones},
author={Vaswani, Ashish and Ramachandran, Prajit and Srinivas, Aravind and Parmar, Niki and Hechtman, Blake and Shlens, Jonathon},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={12894--12904},
year={2021}
}