Rethinking Spatial Dimensions of Vision Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for PiT.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2021-12-08): Code is updated and ported weights are uploaded.
- Update (2021-11-13): Code is released.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
pit_ti | 72.91 | 91.40 | 4.8M | 0.5G | 224 | 0.9 | bicubic | google/baidu(ydmi) |
pit_ti_distill | 74.54 | 92.10 | 5.1M | 0.5G | 224 | 0.9 | bicubic | google/baidu(7k4s) |
pit_xs | 78.18 | 94.16 | 10.5M | 1.1G | 224 | 0.9 | bicubic | google/baidu(gytu) |
pit_xs_distill | 79.31 | 94.36 | 10.9M | 1.1G | 224 | 0.9 | bicubic | google/baidu(ie7s) |
pit_s | 81.08 | 95.33 | 23.4M | 2.4G | 224 | 0.9 | bicubic | google/baidu(kt1n) |
pit_s_distill | 81.99 | 95.79 | 24.0M | 2.5G | 224 | 0.9 | bicubic | google/baidu(hhyc) |
pit_b | 82.44 | 95.71 | 73.5M | 10.6G | 224 | 0.9 | bicubic | google/baidu(uh2v) |
pit_b_distill | 84.14 | 96.86 | 74.5M | 10.7G | 224 | 0.9 | bicubic | google/baidu(3e6g) |
*The results are evaluated on ImageNet2012 validation set.
Teacher Model | Link |
---|---|
RegNet_Y_160 | google/baidu(gjsm) |
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./swin_base_patch4_window7_224.pdparams
, to use the swin_base_patch4_window7_224
model in python:
from config import get_config
from pit import build_pit as build_model
# config files in ./configs/
config = get_config('./configs/pit_ti.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./pit_ti')
model.set_dict(model_state_dict)
To evaluate PiT model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/pit_ti.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./pit_ti'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/pit_ti.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./pit_ti'
To train the PiT model on ImageNet2012 with single GPU, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_singel_gpu.py \
-cfg='./configs/pit_ti.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/pit_ti.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
(coming soon)
@inproceedings{heo2021pit,
title={Rethinking Spatial Dimensions of Vision Transformers},
author={Byeongho Heo and Sangdoo Yun and Dongyoon Han and Sanghyuk Chun and Junsuk Choe and Seong Joon Oh},
booktitle = {International Conference on Computer Vision (ICCV)},
year={2021},
}