RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition, arxiv
PaddlePaddle training/validation code and pretrained models for RepMLP.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2021-09-27): Model FLOPs and # params are uploaded.
- Update (2021-09-14): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
repmlp_res50_light_224 | 77.01 | 93.46 | 87.1M | 3.3G | 224 | 0.875 | bicubic | google/baidu(b4fg) |
*The results are evaluated on ImageNet2012 validation set.
Note: RepMLP weights are ported from here.
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./RepMLP-Res50-light-224_train.pdparams
, to use the RepMLP-Res50-light-224_train
model in python:
from config import get_config
from resmlp_resnet import build_resmlp_resnet as build_model
# config files in ./configs/
config = get_config('./configs/repmlpres50_light_224_train.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./RepMLP-Res50-light-224_train')
model.set_dict(model_state_dict)
To evaluate ResMLP model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/repmlpres50_light_224_train.yaml' \
-dataset='imagenet2012' \
-batch_size=128 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./RepMLP-Res50-light-224_train'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/repmlpres50_light_224_train.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./RepMLP-Res50-light-224_train'
To train the ResMLP Transformer model on ImageNet2012 with single GPUs, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/repmlpres50_light_224_train.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/repmlpres50_light_224_train.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
(coming soon)
@article{ding2021repmlp,
title={RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition},
author={Ding, Xiaohan and Xia, Chunlong and Zhang, Xiangyu and Chu, Xiaojie and Han, Jungong and Ding, Guiguang},
journal={arXiv preprint arXiv:2105.01883},
year={2021}
}@article{melaskyriazi2021doyoueven,
title={Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet},
author={Luke Melas-Kyriazi},
journal=arxiv,
year=2021
}