forked from facebookresearch/ParlAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworlds.py
517 lines (461 loc) · 19.6 KB
/
worlds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from parlai.core.agents import create_agent_from_shared
from parlai.core.message import Message
from parlai.core.worlds import validate, MultiAgentDialogWorld
from parlai.mturk.core.agents import TIMEOUT_MESSAGE
import parlai.mturk.core.mturk_utils as mutils
from parlai.mturk.core.worlds import MTurkOnboardWorld
from parlai.tasks.wizard_of_wikipedia.build import build
from parlai.tasks.wizard_of_wikipedia.agents import TOKEN_KNOWLEDGE, TOKEN_END_KNOWLEDGE
from joblib import Parallel, delayed
import json
import numpy as np
import os
import pickle
import random
import time
# INSTRUCTIONS
START_MSG = '\nSuccessfully matched. \
Now let\'s talk about something through the chat!\
<b><span style="color:red">You can find your chosen topic in the \
bottom left corner.</span></b> \n \
You need to finish at least <b>{} chat turns</b>, \
after which you can click the "Done" button to end the chat. '
CHAT_NOT_DONE_MSG = 'Sorry, we need at least <b>{} more turn(s)</b> to finish. \
Please send a new message:'
TIMEOUT_MSG = '<b> The other person has timed out. \
Please click the "Done with this HIT" button below to finish this HIT.\
</b>'
EXCEED_MIN_TURNS_MSG = '\n {} chat turns finished! \n \
You can click the "Done" button to end the chat if it\'s your turn \
or keep chatting.'
UNEXPECTED_DISCONNECTION_MSG = 'The other worker unexpectedly diconnected. \n \
Please click <span style="color:blue"><b>Done with this HIT</b>\
</span> button below to finish this HIT.'
CHAT_ENDED_MSG = 'One of you ended the chat. Thanks for your time! \n\
Please click <span style="color:blue"><b>Done with this HIT</b>\
</span> button below to finish this HIT.'
WAITING_MSG = 'Please wait while we match you with another worker...'
NAN_MSG = 'The score you entered must be in [1, 2, 3, 4, 5]. Please \
try again:'
TOO_SHORT_MSG = 'Your message is too short, please make it more than \
<b><span style="color:red">{} words</span></b>.'
TOO_LONG_MSG = 'Your message is too long, please make it less than \
<b><span style="color:red">{} words</span></b>.'
# CHOOSING A TOPIC
PICK_TOPIC_MSG = 'To start, please select a topic on the left, then click the \
\'Pick Topic\' button.'
AFTER_PICK_TOPIC_MSG = 'Thank you for selecting a topic! Now, begin the \
conversation with your partner about the topic.'
PLEASE_WAIT_MSG = 'Your partner will choose a discussion topic. Click the \
button below when you are ready to continue.'
# EVALUATION
OTHER_AGENT_FINISHED_MSG = '<b><span style="color:red">This chat is \
done!</span></b> Please click \
<span style="color:blue"><b>Done with this HIT</b></span> button below \
to finish this HIT.'
GMARK_MSG = 'Now the conversation is completed! \n Please evaluate the \
conversation by <b>clicking a button with score from [1, 2, 3, 4, 5]</b> \
below, <span style="color:blue">this score should reflect how you liked \
this conversation (1 means you did not like it at all, and 5 means it was \
an engaging conversation).'
class TopicsGenerator(object):
def __init__(self, opt):
self.opt = opt
self.topics_path = os.path.join(
opt['datapath'], 'wizard_of_wikipedia/topic_splits.json'
)
self.load_topics()
def load_topics(self):
if not os.path.isfile(self.topics_path):
# download the wizard of wikipedia data
build(self.opt)
with open(self.topics_path) as f:
self.data = json.load(f)
self.seen_topics = self.data['train']
self.unseen_topics = self.data['valid'] + self.data['test']
def get_topics(self, seen=True, num=3):
if seen:
return random.sample(self.seen_topics, num)
return random.sample(self.unseen_topics, num)
class TopicChooseWorld(MTurkOnboardWorld):
"""
A world that provides topics to an MTurk Agent and asks them to choose one.
"""
def __init__(self, opt, mturk_agent, role='PERSON_1'):
self.role = role
self.task_type = 'sandbox' if opt['is_sandbox'] else 'live'
self.max_choice_time = opt['max_choice_time']
super().__init__(opt, mturk_agent)
def parley(self):
# only pick topic if your ID is PERSON_1
if self.role == 'PERSON_1':
seen = random.choice([True, False])
num = random.choice([2, 3])
topics = self.mturk_agent.topics_generator.get_topics(seen=seen, num=num)
self.mturk_agent.observe(
validate(
{'id': 'SYSTEM', 'text': PICK_TOPIC_MSG, 'relevant_topics': topics}
)
)
topic_act = self.mturk_agent.act(timeout=self.max_choice_time)
timed_out = self.check_timeout(topic_act)
if timed_out:
return
pick_msg = AFTER_PICK_TOPIC_MSG
self.mturk_agent.observe({'id': 'SYSTEM', 'text': pick_msg})
self.mturk_agent.chosen_topic = topic_act['text']
self.mturk_agent.topic_choices = topics
self.mturk_agent.seen = seen
self.mturk_agent.observe(validate({'id': 'SYSTEM', 'wait_msg': True}))
else:
self.mturk_agent.observe(validate({'id': 'SYSTEM', 'wait_msg': True}))
return
def check_timeout(self, act):
if (
(act['text'] == '[TIMEOUT]')
or (act['text'] == '[RETURNED]')
or (act['text'] == '[DISCONNECT]')
):
return True
else:
return False
class WizardEval(MultiAgentDialogWorld):
def __init__(
self,
opt,
agents=None,
shared=None,
range_turn=(3, 5),
max_turn=5,
max_resp_time=120,
model_agent_opt=None,
world_tag='',
agent_timeout_shutdown=120,
knowledge_retriever_opt=None,
):
self.opt = opt
# TURN CONTROL
self.turn_idx = 0
self.range_turn = range_turn
self.max_turn = max_turn
self.n_turn = np.random.randint(self.range_turn[0], self.range_turn[1]) + 1
self.chat_done = False
self.other_first = random.choice([True, False])
# DATA
self.dialog = []
self.dialog_list = []
self.gmark_score = -1
self.task_type = 'sandbox' if opt['is_sandbox'] else 'live'
self.world_tag = world_tag
self.ratings = ['1', '2', '3', '4', '5']
super().__init__(opt, agents, shared)
# MODEL AGENT SET UP
if model_agent_opt is not None:
self.model_agent = create_agent_from_shared(model_agent_opt)
self.knowledge_agent = create_agent_from_shared(knowledge_retriever_opt)
else:
# case where we test against a human
self.model_agent = None
# TIMEOUT PROTOCOLS
self.max_resp_time = max_resp_time # in secs
self.agent_timeout_shutdown = agent_timeout_shutdown
# TOPIC CHOICES
if self.model_agent is None:
for idx in range(len(self.agents)):
if self.agents[idx].id == 'PERSON_1':
self.eval_agent = self.agents[idx]
self.other_agent = self.agents[idx - 1]
break
else:
self.eval_agent = self.agents[0]
self.chosen_topic = self.eval_agent.chosen_topic
self.seen = self.eval_agent.seen
self.topic_choices = self.eval_agent.topic_choices
def get_human_agent_act(self, agent):
act = agent.act(timeout=self.max_resp_time)
while self.is_msg_tooshortlong(act, agent):
act = agent.act(timeout=self.max_resp_time)
return act
def _add_knowledge_to_act(self, act):
self.knowledge_agent.observe(act, actor_id='apprentice')
knowledge_act = self.knowledge_agent.act()
act['knowledge'] = knowledge_act['text']
act['checked_sentence'] = knowledge_act['checked_sentence']
print(
'[ Using chosen sentence from Wikpedia ]: {}'.format(
knowledge_act['checked_sentence']
)
)
act['title'] = knowledge_act['title']
if self.opt.get('prepend_gold_knowledge', False):
knowledge_text = ' '.join(
[
TOKEN_KNOWLEDGE,
knowledge_act['checked_sentence'],
TOKEN_END_KNOWLEDGE,
]
)
new_text = '\n'.join([knowledge_text, act['text']])
if isinstance(act, Message):
act.force_set('text', new_text)
else:
act['text'] = new_text
return act
def parley(self):
self.turn_idx += 1
control_msg = {'episode_done': False}
control_msg['id'] = 'SYSTEM'
print(self.world_tag + ' is at turn {}...'.format(self.turn_idx))
"""If at first turn, we tell each agent the chosen topic."""
if self.turn_idx == 1:
self.start_time = time.time()
for idx, agent in enumerate(self.agents):
chosen_topic_text = (
'<b><span style="color:blue">'
'{}\n</span></b>'.format(self.chosen_topic.strip())
)
control_msg['chosen_topic'] = chosen_topic_text
print(chosen_topic_text)
control_msg['text'] = self.get_instruction(
tag='start', agent_id=agent.id
)
agent.observe(validate(control_msg))
if idx == 0:
time.sleep(3)
"""If we get to the min turns, inform turker that they can end if they
want.
"""
if self.turn_idx == self.n_turn + 1:
for idx, agent in enumerate(self.agents):
control_msg['text'] = self.get_instruction(idx, tag='exceed_min_turns')
control_msg['exceed_min_turns'] = True
agent.observe(validate(control_msg))
"""Otherwise, we proceed accordingly."""
# Other agent first
if self.other_first and self.turn_idx == 1:
if self.model_agent is not None:
# Model has to observe chosen topic
chosen_act = {
'chosen_topic': self.chosen_topic,
'text': self.chosen_topic,
'episode_done': False,
}
chosen_act = self._add_knowledge_to_act(chosen_act)
self.model_agent.observe(chosen_act)
model_act = self.model_agent.act()
model_act.force_set('id', 'PERSON_2')
self.dialog.append((1, model_act.get('text')))
self.eval_agent.observe(model_act)
self.knowledge_agent.observe(model_act, actor_id='wizard')
else:
act = self.get_human_agent_act(self.other_agent)
timeout = self.check_timeout(act)
if timeout:
# eval agent early disconnect
control_msg['text'] = UNEXPECTED_DISCONNECTION_MSG
self.eval_agent.observe(validate(control_msg))
return
else:
self.dialog.append((1, act.get('text')))
self.eval_agent.observe(act)
# Eval agent turn
act = self.get_human_agent_act(self.eval_agent)
timeout = self.check_timeout(act)
if timeout:
if self.model_agent is None:
control_msg['text'] = UNEXPECTED_DISCONNECTION_MSG
self.other_agent.observe(validate(control_msg))
return
if act['episode_done']:
if self.turn_idx >= self.n_turn:
self.parallel_eval_mode()
self.chat_done = True
for ag in self.agents:
control_msg['text'] = CHAT_ENDED_MSG
ag.observe(validate(control_msg))
return
self.dialog.append((0, act['text']))
# Add chosen topic for model to observe
act['chosen_topic'] = self.chosen_topic
if self.model_agent is not None:
act = self._add_knowledge_to_act(act)
self.model_agent.observe(act)
else:
self.other_agent.observe(act)
# Model_agent turn
if not self.other_first or self.turn_idx < self.n_turn:
if self.model_agent is not None:
act = self.model_agent.act()
self.knowledge_agent.observe(act, actor_id='wizard')
text = act['text']
for (sb_0, sb_1) in [
(' .', '.'),
(' ,', ','),
(' ?', '?'),
(' !', '!'),
('i ', 'I '),
]:
text = text.replace(sb_0, sb_1)
act.force_set('text', text)
act.force_set('id', 'PERSON_2')
# NOTE: your model may or may not need to observe itself here
# If it does, call model_observes_itself or some other specialized
# function
else:
act = self.get_human_agent_act(self.other_agent)
timeout = self.check_timeout(act)
if timeout:
# eval agent early disconnect
control_msg['text'] = UNEXPECTED_DISCONNECTION_MSG
self.eval_agent.observe(validate(control_msg))
return
self.dialog.append((1, act.get('text')))
self.eval_agent.observe(act)
def parallel_eval_mode(self):
"""
Parallel function that shuts one agent down and asks the other to do the
evaluation if their are two agents.
If there is only one agent, it performs the evaluation.
"""
global eval_or_shutdown
def eval_or_shutdown(agent):
if self.model_agent is None and agent == self.other_agent:
control_msg = {'episode_done': False}
control_msg['id'] = 'SYSTEM'
control_msg['text'] = OTHER_AGENT_FINISHED_MSG
self.other_agent.observe(validate(control_msg))
# mark eval agent done
self.eval_agent.mturk_manager.mark_workers_done([self.eval_agent])
# shutdown other agent
self.other_agent.shutdown()
else:
control_msg = {'episode_done': False}
control_msg['id'] = 'SYSTEM'
# General mark for this convo
control_msg['text'] = GMARK_MSG
control_msg['general_mark_score'] = True
self.eval_agent.observe(validate(control_msg))
act = self.eval_agent.act(timeout=self.max_resp_time)
timeout = self.check_timeout(act)
if timeout:
return
while act['text'] not in self.ratings:
control_msg['text'] = NAN_MSG
self.eval_agent.observe(validate(control_msg))
act = self.eval_agent.act(timeout=self.max_resp_time)
if 'text' in act and act['text'] in self.ratings:
self.gmark_score = int(act['text'])
Parallel(n_jobs=len(self.agents), backend='threading')(
delayed(eval_or_shutdown)(agent) for agent in self.agents
)
def model_observes_itself(self, txt):
act = {'text': txt, 'episode_done': False}
self.model_agent.observe(act)
def episode_done(self):
return self.chat_done
def get_instruction(self, agent_id=None, tag='first'):
if tag == 'start':
return START_MSG.format(self.n_turn)
if tag == 'chat_not_done':
return CHAT_NOT_DONE_MSG.format(self.n_turn + 1 - self.turn_idx)
if tag == 'timeout':
return TIMEOUT_MESSAGE
if tag == 'exceed_min_turns':
return EXCEED_MIN_TURNS_MSG.format(self.n_turn)
def save_data(self):
convo_finished = True
bad_workers = []
if not self.opt['is_sandbox']:
if self.opt.get('unique_workers') and self.opt.get('unique_qualif_id'):
# assign qualification to evaluating agent only
qual = self.opt['unique_qualif_id']
mutils.give_worker_qualification(
self.eval_agent.worker_id, qual, value=None, is_sandbox=False
)
if self.dialog == [] or self.gmark_score == -1:
convo_finished = False
data_path = self.opt['data_path']
if not os.path.exists(data_path):
os.makedirs(data_path)
if convo_finished:
filename = os.path.join(
data_path,
'{}_{}_{}.pkl'.format(
time.strftime("%Y%m%d-%H%M%S"),
np.random.randint(0, 1000),
self.task_type,
),
)
else:
filename = os.path.join(
data_path,
'{}_{}_{}_incomplete.pkl'.format(
time.strftime("%Y%m%d-%H%M%S"),
np.random.randint(0, 1000),
self.task_type,
),
)
print(self.world_tag, ': Data successfully saved at {}.'.format(filename))
pickle.dump(
{
'chosen_topic': self.chosen_topic,
'topic_choices': self.topic_choices,
'seen': self.seen,
'dialog': self.dialog,
'dialog_list': self.dialog_list,
'other_first': self.other_first,
'total_time': time.time() - self.start_time,
'workers': [ag.worker_id for ag in self.agents],
'hit_id': [ag.hit_id for ag in self.agents],
'assignment_id': [ag.assignment_id for ag in self.agents],
'bad_workers': bad_workers,
'n_turn': self.n_turn,
'gmark_score': self.gmark_score,
'inference': 'nucleus',
},
open(filename, 'wb'),
)
def is_msg_tooshortlong(self, act, ag, th_min=3, th_max=20):
if act['episode_done']:
return False
control_msg = {'episode_done': False}
control_msg['id'] = 'SYSTEM'
msg_len = len(act['text'].split(' '))
if msg_len < th_min:
control_msg['text'] = TOO_SHORT_MSG.format(th_min)
ag.observe(validate(control_msg))
return True
if msg_len > th_max:
control_msg['text'] = TOO_LONG_MSG.format(th_max)
ag.observe(validate(control_msg))
return True
return False
def check_timeout(self, act):
if act is None:
self.chat_done = True
return True
if (
(act['text'] == '[TIMEOUT]')
or (act['text'] == '[RETURNED]')
or (act['text'] == '[DISCONNECT]')
):
control_msg = {'episode_done': True}
control_msg['id'] = 'SYSTEM'
control_msg['text'] = self.get_instruction(
agent_id=act['id'], tag='timeout'
)
for ag in self.agents:
if ag.id != act['id']:
ag.observe(validate(control_msg))
self.chat_done = True
return True
else:
return False
def shutdown(self):
# only need to shut down evaluating agent
# if more than one agent, other agent shut down previously
self.eval_agent.shutdown()