-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathview.py
186 lines (163 loc) · 7.39 KB
/
view.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from collections import OrderedDict
from torchsummary import summary
import argparse
from torchvision import datasets, transforms
import numpy as np
import os
from torch.utils import data
import matplotlib.pyplot as plt
from medpy.io import load
from skimage.transform import resize
from multiprocessing.dummy import Pool as ThreadPool
testPath = 'digit-recognizer/test.csv'
class TestMnist(data.Dataset):
def __init__(self, pathFolder, transform=None):
self.liverlist = [32,34,38,41,47,87,89,91,105,106,114,115,119]
self.img_list = []
self.tumor_list = []
self.tumorline_list = []
self.liverline_list = []
self.liverBox_list = []
for idx in range(131):
print('preload ', idx)
# img, img_header = load(args.data + 'myTrainingData/volume-' + str(idx) + '.nii' )
# tumor, tumor_header = load(args.data + 'myTrainingData/segmentation-' + str(idx) + '.nii')
self.img_list.append(pathFolder + 'myTrainingData/volume-' + str(idx) + '.nii')
self.tumor_list.append(pathFolder + 'myTrainingData/segmentation-' + str(idx) + '.nii')
self.tumorline_list.append(pathFolder+ 'myTrainingDataTxt/TumorPixels/tumor_' + str(idx) + '.txt')
self.liverline_list.append(pathFolder+ 'myTrainingDataTxt/LiverPixels/liver_' + str(idx) + '.txt')
self.liverBox_list.append(pathFolder+'myTrainingDataTxt/LiverBox/box_' + str(idx) + '.txt')
self.trans = transform
print('init done')
def load_seq_crop_data_masktumor_try(self, Parameter_List):
img = Parameter_List[0]
tumor = Parameter_List[1]
lines = Parameter_List[2]
numid = Parameter_List[3]
minindex = Parameter_List[4]
maxindex = Parameter_List[5]
# randomly scale
scale = np.random.uniform(0.8,1.2)
deps = int(args.input_size * scale)
rows = int(args.input_size * scale)
cols = args.input_cols
sed = np.random.randint(1,numid)
cen = lines[sed-1]
cen = np.fromstring(cen, dtype=int, sep=' ')
# print (cen)
a = min(max(minindex[0] + deps/2, cen[0]), maxindex[0]- deps/2-1)
b = min(max(minindex[1] + rows/2, cen[1]), maxindex[1]- rows/2-1)
c = min(max(minindex[2] + cols/2, cen[2]), maxindex[2]- cols/2-1)
# print(a - deps // 2, ' ', c - args.input_cols // 2, ' ', c + args.input_cols // 2)
cropp_img = img[int(a - deps / 2):int(a + deps / 2), int(b - rows / 2):int(b + rows / 2),
int(c - args.input_cols / 2): int(c + args.input_cols / 2)].copy()
cropp_tumor = tumor[int(a - deps / 2):int(a + deps / 2), int(b - rows / 2):int(b + rows / 2),
int(c - args.input_cols / 2):int(c + args.input_cols / 2)].copy()
cropp_img -= args.mean
# randomly flipping
flip_num = np.random.randint(0,8)
if flip_num == 1:
cropp_img = np.flipud(cropp_img)
cropp_tumor = np.flipud(cropp_tumor)
elif flip_num == 2:
cropp_img = np.fliplr(cropp_img)
cropp_tumor = np.fliplr(cropp_tumor)
elif flip_num == 3:
cropp_img = np.rot90(cropp_img, k=1, axes=(1, 0))
cropp_tumor = np.rot90(cropp_tumor, k=1, axes=(1, 0))
elif flip_num == 4:
cropp_img = np.rot90(cropp_img, k=3, axes=(1, 0))
cropp_tumor = np.rot90(cropp_tumor, k=3, axes=(1, 0))
elif flip_num == 5:
cropp_img = np.fliplr(cropp_img)
cropp_tumor = np.fliplr(cropp_tumor)
cropp_img = np.rot90(cropp_img, k=1, axes=(1, 0))
cropp_tumor = np.rot90(cropp_tumor, k=1, axes=(1, 0))
elif flip_num == 6:
cropp_img = np.fliplr(cropp_img)
cropp_tumor = np.fliplr(cropp_tumor)
cropp_img = np.rot90(cropp_img, k=3, axes=(1, 0))
cropp_tumor = np.rot90(cropp_tumor, k=3, axes=(1, 0))
elif flip_num == 7:
cropp_img = np.flipud(cropp_img)
cropp_tumor = np.flipud(cropp_tumor)
cropp_img = np.fliplr(cropp_img)
cropp_tumor = np.fliplr(cropp_tumor)
#
cropp_tumor = resize(cropp_tumor, (args.input_size,args.input_size, args.input_cols), order=0, mode='edge', cval=0, clip=True, preserve_range=True)
cropp_img = resize(cropp_img, (args.input_size,args.input_size, args.input_cols), order=3, mode='constant', cval=0, clip=True, preserve_range=True)
return cropp_img, cropp_tumor
def __len__(self):
'Denotes the total number of samples'
return 131
def __getitem__(self, idx):
'Generates one sample of data'
if idx >= len(self):
raise StopIteration
print("gen : ", idx)
img, img_header = load(self.img_list[idx] )
tumor, tumor_header = load(self.tumor_list[idx])
maxmin = np.loadtxt(self.liverBox_list[idx], delimiter=' ')
minindex = maxmin[0:3]
maxindex = maxmin[3:6]
minindex = np.array(minindex, dtype='int')
maxindex = np.array(maxindex, dtype='int')
minindex[0] = max(minindex[0]-3, 0)
minindex[1] = max(minindex[1]-3, 0)
minindex[2] = max(minindex[2]-3, 0)
maxindex[0] = min(img.shape[0], maxindex[0]+3)
maxindex[1] = min(img.shape[1], maxindex[1]+3)
maxindex[2] = min(img.shape[2], maxindex[2]+3)
f1 = open(self.tumorline_list[idx],'r')
tumorline = f1.readlines()
f1.close()
f2 = open(self.liverline_list[idx],'r')
liverline = f2.readlines()
f2.close()
num = np.random.randint(0,6)
if num < 3 or (idx in self.liverlist):
lines = liverline
numid = len(liverline)
else:
lines = tumorline
numid = len(tumorline)
Parameter_List = [img, tumor, lines, numid, minindex, maxindex]
X, Y = self.load_seq_crop_data_masktumor_try(Parameter_List)
c0 = np.sum(Y==0)
c1 = np.sum(Y==1)
c2 = np.sum(Y==2)
print(c0, ' ', c1, ' ' , c2)
# if (c0 * c1 * c2 == 0):
# continue
return X.transpose([2, 0, 1]), Y.transpose([2, 0, 1])
parser = argparse.ArgumentParser(description='Keras DenseUnet Training')
# data folder
parser.add_argument('-data', type=str, default='../H-DenseUNet/data/', help='test images')
parser.add_argument('-save_path', type=str, default='Experiments/')
# other paras
parser.add_argument('-b', type=int, default=1)
parser.add_argument('-input_size', type=int, default=224)
parser.add_argument('-model_weight', type=str, default='./model/model_best.hdf5')
parser.add_argument('-input_cols', type=int, default=8)
parser.add_argument('-arch', type=str, default='')
# data augment
parser.add_argument('-mean', type=int, default=48)
args = parser.parse_args()
testSet = TestMnist(args.data, transform=transforms.Compose([transforms.ToTensor()]))
testGen = data.DataLoader(testSet, batch_size= 1, shuffle= True, num_workers= 1)
for idx, (X, Y) in enumerate(testGen):
print(idx)
print(X.shape)
print(Y.shape)
fig = plt.figure()
for i in range(8):
a = fig.add_subplot(2, 8, i + 1)
plt.imshow(X[0][i], cmap = plt.cm.gray)
for i in range(8):
a = fig.add_subplot(2, 8, 9 + i)
plt.imshow(Y[0][i])
plt.show()