forked from open-mmlab/Amphion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathf0.py
299 lines (252 loc) · 8.02 KB
/
f0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import librosa
import numpy as np
import torch
import parselmouth
import torchcrepe
import pyworld as pw
def get_bin_index(f0, m, M, n_bins, use_log_scale):
"""
WARNING: to abandon!
Args:
raw_f0: tensor whose shpae is (N, frame_len)
Returns:
index: tensor whose shape is same to f0
"""
raw_f0 = f0.clone()
raw_m, raw_M = m, M
if use_log_scale:
f0[torch.where(f0 == 0)] = 1
f0 = torch.log(f0)
m, M = float(np.log(m)), float(np.log(M))
# Set normal index in [1, n_bins - 1]
width = (M + 1e-7 - m) / (n_bins - 1)
index = (f0 - m) // width + 1
# Set unvoiced frames as 0, Therefore, the vocabulary is [0, n_bins- 1], whose size is n_bins
index[torch.where(f0 == 0)] = 0
# TODO: Boundary check (special: to judge whether 0 for unvoiced)
if torch.any(raw_f0 > raw_M):
print("F0 Warning: too high f0: {}".format(raw_f0[torch.where(raw_f0 > raw_M)]))
index[torch.where(raw_f0 > raw_M)] = n_bins - 1
if torch.any(raw_f0 < raw_m):
print("F0 Warning: too low f0: {}".format(raw_f0[torch.where(f0 < m)]))
index[torch.where(f0 < m)] = 0
return torch.as_tensor(index, dtype=torch.long, device=f0.device)
def f0_to_coarse(f0, pitch_bin, pitch_min, pitch_max):
## TODO: Figure out the detail of this function
f0_mel_min = 1127 * np.log(1 + pitch_min / 700)
f0_mel_max = 1127 * np.log(1 + pitch_max / 700)
is_torch = isinstance(f0, torch.Tensor)
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (pitch_bin - 2) / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > pitch_bin - 1] = pitch_bin - 1
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int32)
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
f0_coarse.max(),
f0_coarse.min(),
)
return f0_coarse
def interpolate(f0):
"""Interpolate the unvoiced part. Thus the f0 can be passed to a subtractive synthesizer.
Args:
f0: A numpy array of shape (seq_len,)
Returns:
f0: Interpolated f0 of shape (seq_len,)
uv: Unvoiced part of shape (seq_len,)
"""
uv = f0 == 0
if len(f0[~uv]) > 0:
# interpolate the unvoiced f0
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])
uv = uv.astype("float")
uv = np.min(np.array([uv[:-2], uv[1:-1], uv[2:]]), axis=0)
uv = np.pad(uv, (1, 1))
return f0, uv
def get_log_f0(f0):
f0[np.where(f0 == 0)] = 1
log_f0 = np.log(f0)
return log_f0
# ========== Methods ==========
def get_f0_features_using_pyin(audio, cfg):
"""Using pyin to extract the f0 feature.
Args:
audio
fs
win_length
hop_length
f0_min
f0_max
Returns:
f0: numpy array of shape (frame_len,)
"""
f0, voiced_flag, voiced_probs = librosa.pyin(
y=audio,
fmin=cfg.f0_min,
fmax=cfg.f0_max,
sr=cfg.sample_rate,
win_length=cfg.win_size,
hop_length=cfg.hop_size,
)
# Set nan to 0
f0[voiced_flag == False] = 0
return f0
def get_f0_features_using_parselmouth(audio, cfg, speed=1):
"""Using parselmouth to extract the f0 feature.
Args:
audio
mel_len
hop_length
fs
f0_min
f0_max
speed(default=1)
Returns:
f0: numpy array of shape (frame_len,)
pitch_coarse: numpy array of shape (frame_len,)
"""
hop_size = int(np.round(cfg.hop_size * speed))
# Calculate the time step for pitch extraction
time_step = hop_size / cfg.sample_rate * 1000
f0 = (
parselmouth.Sound(audio, cfg.sample_rate)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=cfg.f0_min,
pitch_ceiling=cfg.f0_max,
)
.selected_array["frequency"]
)
# Pad the pitch to the mel_len
# pad_size = (int(len(audio) // hop_size) - len(f0) + 1) // 2
# f0 = np.pad(f0, [[pad_size, mel_len - len(f0) - pad_size]], mode="constant")
# Get the coarse part
pitch_coarse = f0_to_coarse(f0, cfg.pitch_bin, cfg.f0_min, cfg.f0_max)
return f0, pitch_coarse
def get_f0_features_using_dio(audio, cfg):
"""Using dio to extract the f0 feature.
Args:
audio
mel_len
fs
hop_length
f0_min
f0_max
Returns:
f0: numpy array of shape (frame_len,)
"""
# Get the raw f0
_f0, t = pw.dio(
audio.astype("double"),
cfg.sample_rate,
f0_floor=cfg.f0_min,
f0_ceil=cfg.f0_max,
channels_in_octave=2,
frame_period=(1000 * cfg.hop_size / cfg.sample_rate),
)
# Get the f0
f0 = pw.stonemask(audio.astype("double"), _f0, t, cfg.sample_rate)
return f0
def get_f0_features_using_harvest(audio, mel_len, fs, hop_length, f0_min, f0_max):
"""Using harvest to extract the f0 feature.
Args:
audio
mel_len
fs
hop_length
f0_min
f0_max
Returns:
f0: numpy array of shape (frame_len,)
"""
f0, _ = pw.harvest(
audio.astype("double"),
fs,
f0_floor=f0_min,
f0_ceil=f0_max,
frame_period=(1000 * hop_length / fs),
)
f0 = f0.astype("float")[:mel_len]
return f0
def get_f0_features_using_crepe(
audio, mel_len, fs, hop_length, hop_length_new, f0_min, f0_max, threshold=0.3
):
"""Using torchcrepe to extract the f0 feature.
Args:
audio
mel_len
fs
hop_length
hop_length_new
f0_min
f0_max
threshold(default=0.3)
Returns:
f0: numpy array of shape (frame_len,)
"""
# Currently, crepe only supports 16khz audio
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
audio_16k = librosa.resample(audio, orig_sr=fs, target_sr=16000)
audio_16k_torch = torch.FloatTensor(audio_16k).unsqueeze(0).to(device)
# Get the raw pitch
f0, pd = torchcrepe.predict(
audio_16k_torch,
16000,
hop_length_new,
f0_min,
f0_max,
pad=True,
model="full",
batch_size=1024,
device=device,
return_periodicity=True,
)
# Filter, de-silence, set up threshold for unvoiced part
pd = torchcrepe.filter.median(pd, 3)
pd = torchcrepe.threshold.Silence(-60.0)(pd, audio_16k_torch, 16000, hop_length_new)
f0 = torchcrepe.threshold.At(threshold)(f0, pd)
f0 = torchcrepe.filter.mean(f0, 3)
# Convert unvoiced part to 0hz
f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)
# Interpolate f0
nzindex = torch.nonzero(f0[0]).squeeze()
f0 = torch.index_select(f0[0], dim=0, index=nzindex).cpu().numpy()
time_org = 0.005 * nzindex.cpu().numpy()
time_frame = np.arange(mel_len) * hop_length / fs
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
return f0
def get_f0(audio, cfg):
if cfg.pitch_extractor == "dio":
f0 = get_f0_features_using_dio(audio, cfg)
elif cfg.pitch_extractor == "pyin":
f0 = get_f0_features_using_pyin(audio, cfg)
elif cfg.pitch_extractor == "parselmouth":
f0, _ = get_f0_features_using_parselmouth(audio, cfg)
# elif cfg.data.f0_extractor == 'cwt': # todo
return f0
def get_cents(f0_hz):
"""
F_{cent} = 1200 * log2 (F/440)
Reference:
APSIPA'17, Perceptual Evaluation of Singing Quality
"""
voiced_f0 = f0_hz[f0_hz != 0]
return 1200 * np.log2(voiced_f0 / 440)
def get_pitch_derivatives(f0_hz):
"""
f0_hz: (,T)
"""
f0_cent = get_cents(f0_hz)
return f0_cent[1:] - f0_cent[:-1]
def get_pitch_sub_median(f0_hz):
"""
f0_hz: (,T)
"""
f0_cent = get_cents(f0_hz)
return f0_cent - np.median(f0_cent)