forked from botprof/agv-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fws_beacons_observer.py
255 lines (213 loc) · 7 KB
/
fws_beacons_observer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"""
Example fws_beacons_observer.py
Author: Joshua A. Marshall <[email protected]>
GitHub: https://github.com/botprof/agv-examples
"""
# %%
# SIMULATION SETUP
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from mobotpy.integration import rk_four
from mobotpy.models import FourWheelSteered
# Set the simulation time [s] and the sample period [s]
SIM_TIME = 20.0
T = 0.1
# Create an array of time values [s]
t = np.arange(0.0, SIM_TIME, T)
N = np.size(t)
# %%
# VEHICLE SETUP
# Set the wheelbase and track of the vehicle [m]
ELL_W = 2.50
ELL_T = 1.75
# Let's now use the class Ackermann for plotting
vehicle = FourWheelSteered(ELL_W, ELL_T)
# %%
# CREATE A MAP OF FEATURES
# Set the minimum number of features in the map that achieves observability
N_FEATURES = 10
# Set the size [m] of a square map
D_MAP = 30.0
# Create a map of randomly placed feature locations
f_map = np.zeros((2, N_FEATURES))
for i in range(0, N_FEATURES):
f_map[:, i] = D_MAP * (np.random.rand(2) - 0.5)
print(f_map)
# %%
# FUNCTION TO MODEL RANGE TO FEATURES
def range_sensor(x, f_map):
"""
Function to model the range sensor.
Parameters
----------
x : ndarray
An array of length 2 representing the robot's position.
f_map : ndarray
An array of size (2, N_FEATURES) containing map feature locations.
Returns
-------
ndarray
The range to each feature in the map.
"""
# Compute the range to each feature from the current robot position
r = np.zeros(N_FEATURES)
for j in range(0, N_FEATURES):
r[j] = np.sqrt((f_map[0, j] - x[0]) ** 2 + (f_map[1, j] - x[1]) ** 2)
# Return the array of measurements
return r
# %%
# FUNCTION TO IMPLEMENT THE OBSERVER
def fws_observer(q, u, r, f_map):
"""
Function to implement an observer for the robot's pose.
Parameters
----------
q : ndarray
An array of length 4 representing the (last) robot's pose.
u : ndarray
An array of length 2 representing the robot's inputs.
r : ndarray
An array of length N_FEATURES representing the range to each feature.
f_map : ndarray
An array of size (2, N_FEATURES) containing map feature locations.
Returns
-------
ndarray
The estimated pose of the robot.
"""
# Compute the Jacobian matrices (i.e., linearize about current estimate)
F = np.zeros((4, 4))
F = np.eye(4) + T * np.array(
[
[
0,
0,
-u[0] * np.sin(q[2]) * np.cos(q[3]),
-u[0] * np.cos(q[2]) * np.sin(q[3]),
],
[
0,
0,
u[0] * np.cos(q[2]) * np.cos(q[3]),
-u[0] * np.sin(q[2]) * np.sin(q[3]),
],
[0, 0, 0, u[0] * 1.0 / (0.5 * ELL_W) * np.cos(q[3])],
[0, 0, 0, 0],
]
)
H = np.zeros((N_FEATURES, 4))
for j in range(0, N_FEATURES):
H[j, :] = np.array(
[
-(f_map[0, j] - q[0]) / range_sensor(q, f_map)[j],
-(f_map[1, j] - q[1]) / range_sensor(q, f_map)[j],
0,
0,
]
)
# Check the observability of this system
observability_matrix = H
for j in range(1, 4):
observability_matrix = np.concatenate(
(observability_matrix, H @ np.linalg.matrix_power(F, j)), axis=0
)
if np.linalg.matrix_rank(observability_matrix) < 4:
raise ValueError("System is not observable!")
# Set the desired poles at lambda_z (change these as desired)
lambda_z = np.array([0.8, 0.7, 0.6, 0.5])
# Compute the observer gain
#L = signal.place_poles(F.T, H.T, lambda_z).gain_matrix.T
# Use the pseudo-inverse to compute the observer gain (when overdetermined)
L = signal.place_poles(F.T, np.eye(4), lambda_z).gain_matrix @ np.linalg.pinv(H)
# Predict the state using the inputs and the robot's kinematic model
q_new = q + T * vehicle.f(q, u)
# Correct the state using the range measurements
q_new = q_new + L @ (r - range_sensor(q, f_map))
# Return the estimated state
return q_new
# %%
# RUN SIMULATION
# Initialize arrays that will be populated with our inputs and states
x = np.zeros((4, N))
u = np.zeros((2, N))
x_hat = np.zeros((4, N))
# Set the initial pose [m, m, rad, rad], velocities [m/s, rad/s]
x[0, 0] = -5.0
x[1, 0] = -3.0
x[2, 0] = np.pi / 2.0
x[3, 0] = 0.0
u[0, 0] = 5.0
u[1, 0] = 0
# Just drive around and try to localize!
for k in range(1, N):
# Measure the actual range to each feature
r = range_sensor(x[:, k - 1], f_map)
# Use the range measurements to estimate the robot's state
x_hat[:, k] = fws_observer(x_hat[:, k - 1], u[:, k - 1], r, f_map)
# Choose some new inputs
u[0, k] = 5.0
u[1, k] = -0.25 * np.sin(1.0 * t[k])
# Simulate the robot's motion
x[:, k] = rk_four(vehicle.f, x[:, k - 1], u[:, k - 1], T)
# %%
# MAKE SOME PLOTS
# Function to wrap angles to [-pi, pi]
def wrap_to_pi(angle):
"""Wrap angles to the range [-pi, pi]."""
return (angle + np.pi) % (2 * np.pi) - np.pi
# Change some plot settings (optional)
plt.rc("text", usetex=True)
plt.rc("text.latex", preamble=r"\usepackage{cmbright,amsmath,bm}")
plt.rc("savefig", format="pdf")
plt.rc("savefig", bbox="tight")
# Plot the position of the vehicle in the plane
fig1 = plt.figure(1)
plt.plot(f_map[0, :], f_map[1, :], "C4*", label="Feature")
plt.plot(x[0, :], x[1, :])
plt.axis("equal")
X_BL, Y_BL, X_BR, Y_BR, X_FL, Y_FL, X_FR, Y_FR, X_BD, Y_BD = vehicle.draw(x[:, 0])
plt.fill(X_BL, Y_BL, "k")
plt.fill(X_BR, Y_BR, "k")
plt.fill(X_FR, Y_FR, "k")
plt.fill(X_FL, Y_FL, "k")
plt.fill(X_BD, Y_BD, "C2", alpha=0.5, label="Start")
X_BL, Y_BL, X_BR, Y_BR, X_FL, Y_FL, X_FR, Y_FR, X_BD, Y_BD = vehicle.draw(x[:, N - 1])
plt.fill(X_BL, Y_BL, "k")
plt.fill(X_BR, Y_BR, "k")
plt.fill(X_FR, Y_FR, "k")
plt.fill(X_FL, Y_FL, "k")
plt.fill(X_BD, Y_BD, "C3", alpha=0.5, label="End")
plt.xlabel(r"$x$ [m]")
plt.ylabel(r"$y$ [m]")
plt.legend()
# Plot the states as a function of time
fig2 = plt.figure(2)
fig2.set_figheight(6.4)
ax2a = plt.subplot(411)
plt.plot(t, x[0, :], "C0", label="Actual")
plt.plot(t, x_hat[0, :], "C1--", label="Estimated")
plt.grid(color="0.95")
plt.ylabel(r"$x$ [m]")
plt.setp(ax2a, xticklabels=[])
plt.legend()
ax2b = plt.subplot(412)
plt.plot(t, x[1, :], "C0", label="Actual")
plt.plot(t, x_hat[1, :], "C1--", label="Estimated")
plt.grid(color="0.95")
plt.ylabel(r"$y$ [m]")
plt.setp(ax2b, xticklabels=[])
ax2c = plt.subplot(413)
plt.plot(t, wrap_to_pi(x[2, :]) * 180.0 / np.pi, "C0", label="Actual")
plt.plot(t, wrap_to_pi(x_hat[2, :]) * 180.0 / np.pi, "C1--", label="Estimated")
plt.ylabel(r"$\theta$ [deg]")
plt.grid(color="0.95")
plt.setp(ax2c, xticklabels=[])
ax2d = plt.subplot(414)
plt.plot(t, wrap_to_pi(x[3, :]) * 180.0 / np.pi, "C0", label="Actual")
plt.plot(t, wrap_to_pi(x_hat[3, :]) * 180.0 / np.pi, "C1--", label="Estimated")
plt.ylabel(r"$\phi$ [deg]")
plt.grid(color="0.95")
plt.xlabel(r"$t$ [s]")
# Show all the plots to the screen
plt.show()