This repository has been archived by the owner on Oct 25, 2018. It is now read-only.
forked from Grzego/handwriting-generation
-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
287 lines (233 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import argparse
import numpy as np
import tensorflow as tf
from collections import namedtuple
from utils import next_experiment_path
from batch_generator import BatchGenerator
# TODO: add help info
parser = argparse.ArgumentParser()
parser.add_argument('--seq_len', dest='seq_len', default=256, type=int)
parser.add_argument('--batch_size', dest='batch_size', default=64, type=int)
parser.add_argument('--epochs', dest='epochs', default=30, type=int)
parser.add_argument('--window_mixtures', dest='window_mixtures', default=10, type=int)
parser.add_argument('--output_mixtures', dest='output_mixtures', default=20, type=int)
parser.add_argument('--lstm_layers', dest='lstm_layers', default=3, type=int)
parser.add_argument('--units_per_layer', dest='units', default=400, type=int)
parser.add_argument('--restore', dest='restore', default=None, type=str)
args = parser.parse_args()
epsilon = 1e-8
class WindowLayer(object):
def __init__(self, num_mixtures, sequence, num_letters):
self.sequence = sequence # one-hot encoded sequence of characters -- [batch_size, length, num_letters]
self.seq_len = tf.shape(sequence)[1]
self.num_mixtures = num_mixtures
self.num_letters = num_letters
self.u_range = -tf.expand_dims(tf.expand_dims(tf.range(0., tf.cast(self.seq_len, dtype=tf.float32)), axis=0),
axis=0)
def __call__(self, inputs, k, reuse=None):
with tf.variable_scope('window', reuse=reuse):
alpha = tf.layers.dense(inputs, self.num_mixtures, activation=tf.exp,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.075), name='alpha')
beta = tf.layers.dense(inputs, self.num_mixtures, activation=tf.exp,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.075), name='beta')
kappa = tf.layers.dense(inputs, self.num_mixtures, activation=tf.exp,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.075), name='kappa')
a = tf.expand_dims(alpha, axis=2)
b = tf.expand_dims(beta, axis=2)
k = tf.expand_dims(k + kappa, axis=2)
phi = tf.exp(-np.square(self.u_range + k) * b) * a # [batch_size, mixtures, length]
phi = tf.reduce_sum(phi, axis=1, keep_dims=True) # [batch_size, 1, length]
# whether or not network finished generating sequence
finish = tf.cast(phi[:, 0, -1] > tf.reduce_max(phi[:, 0, :-1], axis=1), tf.float32)
return tf.squeeze(tf.matmul(phi, self.sequence), axis=1), \
tf.squeeze(k, axis=2), \
tf.squeeze(phi, axis=1), \
tf.expand_dims(finish, axis=1)
@property
def output_size(self):
return [self.num_letters, self.num_mixtures, 1]
class MixtureLayer(object):
def __init__(self, input_size, output_size, num_mixtures):
self.input_size = input_size
self.output_size = output_size
self.num_mixtures = num_mixtures
def __call__(self, inputs, bias=0., reuse=None):
with tf.variable_scope('mixture_output', reuse=reuse):
e = tf.layers.dense(inputs, 1,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.075), name='e')
pi = tf.layers.dense(inputs, self.num_mixtures,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.075), name='pi')
mu1 = tf.layers.dense(inputs, self.num_mixtures,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.075), name='mu1')
mu2 = tf.layers.dense(inputs, self.num_mixtures,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.075), name='mu2')
std1 = tf.layers.dense(inputs, self.num_mixtures,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.075), name='std1')
std2 = tf.layers.dense(inputs, self.num_mixtures,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.075), name='std2')
rho = tf.layers.dense(inputs, self.num_mixtures,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.075), name='rho')
return tf.nn.sigmoid(e), \
tf.nn.softmax(pi * (1. + bias)), \
mu1, mu2, \
tf.exp(std1 - bias), tf.exp(std2 - bias), \
tf.nn.tanh(rho)
class RNNModel(tf.nn.rnn_cell.RNNCell):
def __init__(self, layers, num_units, input_size, num_letters, batch_size, window_layer):
super(RNNModel, self).__init__()
self.layers = layers
self.num_units = num_units
self.input_size = input_size
self.num_letters = num_letters
self.window_layer = window_layer
self.last_phi = None
with tf.variable_scope('rnn', reuse=None):
self.lstms = [tf.nn.rnn_cell.LSTMCell(num_units)
for _ in range(layers)]
self.states = [tf.Variable(tf.zeros([batch_size, s]), trainable=False)
for s in self.state_size]
self.zero_states = tf.group(*[sp.assign(sc)
for sp, sc in zip(self.states,
self.zero_state(batch_size, dtype=tf.float32))])
@property
def state_size(self):
return [self.num_units] * self.layers * 2 + self.window_layer.output_size
@property
def output_size(self):
return [self.num_units]
def call(self, inputs, state, **kwargs):
# state[-3] --> window
# state[-2] --> k
# state[-1] --> finish
# state[2n] --> h
# state[2n+1] --> c
window, k, finish = state[-3:]
output_state = []
prev_output = []
for layer in range(self.layers):
x = tf.concat([inputs, window] + prev_output, axis=1)
with tf.variable_scope('lstm_{}'.format(layer)):
output, s = self.lstms[layer](x, tf.nn.rnn_cell.LSTMStateTuple(state[2 * layer],
state[2 * layer + 1]))
prev_output = [output]
output_state += [*s]
if layer == 0:
window, k, self.last_phi, finish = self.window_layer(output, k)
return output, output_state + [window, k, finish]
def create_graph(num_letters, batch_size,
num_units=400, lstm_layers=3,
window_mixtures=10, output_mixtures=20):
graph = tf.Graph()
with graph.as_default():
coordinates = tf.placeholder(tf.float32, shape=[None, None, 3])
sequence = tf.placeholder(tf.float32, shape=[None, None, num_letters])
reset = tf.placeholder(tf.float32, shape=[None, 1])
bias = tf.placeholder_with_default(tf.zeros(shape=[]), shape=[])
def create_model(generate=None):
in_coords = coordinates[:, :-1, :]
out_coords = coordinates[:, 1:, :]
_batch_size = 1 if generate else batch_size
if generate:
in_coords = coordinates
with tf.variable_scope('model', reuse=generate):
window = WindowLayer(num_mixtures=window_mixtures, sequence=sequence, num_letters=num_letters)
rnn_model = RNNModel(layers=lstm_layers, num_units=num_units,
input_size=3, num_letters=num_letters,
window_layer=window, batch_size=_batch_size)
reset_states = tf.group(*[state.assign(state * reset)
for state in rnn_model.states])
outs, states = tf.nn.dynamic_rnn(rnn_model, in_coords,
initial_state=rnn_model.states)
output_layer = MixtureLayer(input_size=num_units, output_size=2,
num_mixtures=output_mixtures)
with tf.control_dependencies([sp.assign(sc) for sp, sc in zip(rnn_model.states, states)]):
with tf.name_scope('prediction'):
outs = tf.reshape(outs, [-1, num_units])
e, pi, mu1, mu2, std1, std2, rho = output_layer(outs, bias)
with tf.name_scope('loss'):
coords = tf.reshape(out_coords, [-1, 3])
xs, ys, es = tf.unstack(tf.expand_dims(coords, axis=2), axis=1)
mrho = 1 - tf.square(rho)
xms = (xs - mu1) / std1
yms = (ys - mu2) / std2
z = tf.square(xms) + tf.square(yms) - 2. * rho * xms * yms
n = 1. / (2. * np.pi * std1 * std2 * tf.sqrt(mrho)) * tf.exp(-z / (2. * mrho))
ep = es * e + (1. - es) * (1. - e)
rp = tf.reduce_sum(pi * n, axis=1)
loss = tf.reduce_mean(-tf.log(rp + epsilon) - tf.log(ep + epsilon))
if generate:
# save params for easier model loading and prediction
for param in [('coordinates', coordinates),
('sequence', sequence),
('bias', bias),
('e', e), ('pi', pi),
('mu1', mu1), ('mu2', mu2),
('std1', std1), ('std2', std2),
('rho', rho),
('phi', rnn_model.last_phi),
('window', rnn_model.states[-3]),
('kappa', rnn_model.states[-2]),
('finish', rnn_model.states[-1]),
('zero_states', rnn_model.zero_states)]:
tf.add_to_collection(*param)
with tf.name_scope('training'):
steps = tf.Variable(0.)
learning_rate = tf.train.exponential_decay(0.001, steps, staircase=True,
decay_steps=10000, decay_rate=0.5)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
grad, var = zip(*optimizer.compute_gradients(loss))
grad, _ = tf.clip_by_global_norm(grad, 3.)
train_step = optimizer.apply_gradients(zip(grad, var), global_step=steps)
with tf.name_scope('summary'):
# TODO: add more summaries
summary = tf.summary.merge([
tf.summary.scalar('loss', loss)
])
return namedtuple('Model', ['coordinates', 'sequence', 'reset_states', 'reset', 'loss', 'train_step',
'learning_rate', 'summary'])(
coordinates, sequence, reset_states, reset, loss, train_step, learning_rate, summary
)
train_model = create_model(generate=None)
_ = create_model(generate=True) # just to create ops for generation
return graph, train_model
def main():
restore_model = args.restore
seq_len = args.seq_len
batch_size = args.batch_size
num_epoch = args.epochs
batches_per_epoch = 1000
batch_generator = BatchGenerator(batch_size, seq_len)
g, vs = create_graph(batch_generator.num_letters, batch_size,
num_units=args.units, lstm_layers=args.lstm_layers,
window_mixtures=args.window_mixtures,
output_mixtures=args.output_mixtures)
with tf.Session(graph=g) as sess:
model_saver = tf.train.Saver(max_to_keep=2)
if restore_model:
model_file = tf.train.latest_checkpoint(os.path.join(restore_model, 'models'))
experiment_path = restore_model
epoch = int(model_file.split('-')[-1]) + 1
model_saver.restore(sess, model_file)
else:
sess.run(tf.global_variables_initializer())
experiment_path = next_experiment_path()
epoch = 0
summary_writer = tf.summary.FileWriter(experiment_path, graph=g, flush_secs=10)
summary_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.START),
global_step=epoch * batches_per_epoch)
for e in range(epoch, num_epoch):
print('\nEpoch {}'.format(e))
for b in range(1, batches_per_epoch + 1):
coords, seq, reset, needed = batch_generator.next_batch()
if needed:
sess.run(vs.reset_states, feed_dict={vs.reset: reset})
l, s, _ = sess.run([vs.loss, vs.summary, vs.train_step],
feed_dict={vs.coordinates: coords,
vs.sequence: seq})
summary_writer.add_summary(s, global_step=e * batches_per_epoch + b)
print('\r[{:5d}/{:5d}] loss = {}'.format(b, batches_per_epoch, l), end='')
model_saver.save(sess, os.path.join(experiment_path, 'models', 'model'),
global_step=e)
if __name__ == '__main__':
main()