forked from noterminusgit/statarb
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathosim_simple.py
122 lines (95 loc) · 3.75 KB
/
osim_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python
#from util import *
#from regress import *
#from loaddata import *
import openopt
from collections import defaultdict
from datetime import timedelta
import argparse
import glob
import pandas as pd
import numpy as np
dflist = list()
for file in glob.glob("*.txt"):
df = pd.read_csv(file, sep=" ", names=['fcast', "blah", "date", "time", "not", "cumpnl", "dpnl", "bps", "turn", "other"])
df['date'] = pd.to_datetime(df['date'])
df = df.set_index(['date', 'fcast'])
dflist.append(df)
df = pd.concat(dflist)
cols = df['bps'].unstack().columns
def fcn(weights, start, end):
cov_one_df = df[ (df.index.get_level_values('date') > start) & (df.index.get_level_values('date') < end) ]['bps'].unstack().fillna(0).cov()
pvar = 0
for ii in range(0,10):
pvar += weights[ii] * cov_one_df.values[ii,ii] * cov_one_df.values[ii,ii]
for ii in range(0,10):
for jj in range(0,10):
pvar += 2 * weights[ii] * weights[jj] * cov_one_df.values[ii, jj]
pret = 1
ret_df = df[ (df.index.get_level_values('date') > start) & (df.index.get_level_values('date') < end) ]['bps'].unstack().fillna(0).mean()
for ii in range(0,10):
pret += weights[ii] * ret_df.values[ii]
# print "{} {} {}".format((pret * 252) / np.sqrt(pvar * 252), pret * 252, np.sqrt(pvar * 252))
return 1 / np.sqrt(pvar)
def sharpe_fcn(weights, start, end):
cov_one_df = df[ (df.index.get_level_values('date') > start) & (df.index.get_level_values('date') < end) ]['bps'].unstack().fillna(0).cov()
pvar = 0
for ii in range(0,10):
pvar += weights[ii] * cov_one_df.values[ii,ii] * cov_one_df.values[ii,ii]
for ii in range(0,10):
for jj in range(0,10):
pvar += 2 * weights[ii] * weights[jj] * cov_one_df.values[ii, jj]
pret = 0
ret_df = df[ (df.index.get_level_values('date') > start) & (df.index.get_level_values('date') < end) ]['bps'].unstack().fillna(0).mean()
for ii in range(0,10):
pret += weights[ii] * ret_df.values[ii]
print "{} {} {}".format((pret * 252) / np.sqrt(pvar * 252), pret * 252, np.sqrt(pvar * 252))
return (pret * 252) / np.sqrt(pvar * 252)
mean = 0
cnt = 0
gstart = pd.to_datetime("20110101")
start = pd.to_datetime("20110101")
end = pd.to_datetime("20110101") + timedelta(days=30)
while end < pd.to_datetime("20130101"):
lb = np.ones(10) * 0.0
ub = np.ones(10)
plotit = False
initial_weights = np.asarray([.5, .5, .5, .5, .5, .5, .5, .5, .5, .5])
#initial_weights = np.asarray([0, 0, 0, 0, 1, 0, 0, 0, 0, 0])
p = openopt.NSP(goal='max', f=fcn, x0=initial_weights, lb=lb, ub=ub)
p.args.f = (start, end)
p.ftol = 0.001
p.maxFunEvals = 300
r = p.solve('ralg')
if (r.stopcase == -1 or r.isFeasible == False):
print objective_detail(target, *g_params)
raise Exception("Optimization failed")
print r.xf
for ii in range(0,10):
print "{}: {}".format(cols[ii], r.xf[ii])
ii += 1
wtrecent = r.xf
p = openopt.NSP(goal='max', f=fcn, x0=initial_weights, lb=lb, ub=ub)
p.args.f = (gstart, end)
p.ftol = 0.001
p.maxFunEvals = 300
r = p.solve('ralg')
if (r.stopcase == -1 or r.isFeasible == False):
print objective_detail(target, *g_params)
raise Exception("Optimization failed")
print r.xf
for ii in range(0,10):
print "{}: {}".format(cols[ii], r.xf[ii])
ii += 1
wtall = r.xf
#fcn(initial_weights, start='20110701', end='20120101')
wts = np.ones(10) * 0.0
for ii in range(0, 10):
wts[ii] = (wtall[ii] + wtrecent[ii]) / 2
start = end
end = end + timedelta(days=30)
sharpe = sharpe_fcn(wts, start, end)
print "OS: {} {}".format(end, sharpe)
mean += sharpe
cnt += 1
print mean/cnt