forked from je-dbl/GNN-RecSys
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
611 lines (546 loc) · 25.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import datetime
from datetime import timedelta
import logging
import math
import time
import click
import numpy as np
from skopt import gp_minimize
from skopt.space import Real, Integer, Categorical
from skopt.utils import use_named_args
from skopt.callbacks import CheckpointSaver
from skopt import load
import torch
from src.builder import create_graph, import_features
from src.model import ConvModel, max_margin_loss
from src.sampling import train_valid_split, generate_dataloaders
from src.metrics import (create_already_bought, create_ground_truth,
get_metrics_at_k, get_recs)
from src.train.run import train_model, get_embeddings
from src.evaluation import explore_recs, explore_sports, check_coverage
from src.utils import save_txt, save_outputs, get_last_checkpoint
from src.utils_data import DataLoader, FixedParameters, DataPaths, assign_graph_features
from src.utils_vizualization import plot_train_loss
import inference_hp
from logging_config import get_logger
log = get_logger(__name__)
global cuda
cuda = torch.cuda.is_available()
device = torch.device('cuda')
if not cuda:
num_workers = 0
else:
num_workers = 4
def train(data, fixed_params, data_paths,
visualization, check_embedding, **params):
"""
Function to find the best hyperparameter combination.
Files needed to run
-------------------
All the files in the src.utils_data.DataPaths:
It includes all the interactions between user, sport and items, as well as features for user, sport and items.
If starting hyperparametrization from a checkpoint:
The checkpoint file, generated by skopt during a previous hyperparametrization. The most recent file of
the root folder will be fetched.
Parameters
----------
data :
Object of class DataLoader, containing multiple arguments such as user_item_train dataframe, graph schema, etc.
fixed_params :
All parameters that are fixed, i.e. not part of the hyperparametrization.
data_paths :
All data paths (mainly csv). # Note: currently, only paths.result_filepath is used here.
visualization :
Visualize results or not. # Note: currently not used, visualization is always on or controlled by fixed_params.
check_embedding :
Visualize recommendations or not. # Note: currently not used, controlled by fixed_params.
**params :
Mainly params that come from the hyperparametrization loop, controlled by skopt.
Returns
-------
recall :
Recall on the test set for the current combination of hyperparameters.
Saves to files
--------------
logging of all experiments:
All training logs are saved to result_filepath, including losses, metrics and examples of recommendations
Plots of the evolution of losses and metrics are saved to the folder 'plots'
best models:
All models, fixed_params and params that yielded recall higher than 8% on specific item identifier or 20% on
generic item identifier are saved to the folder 'models'
"""
# Establish hyperparameters
# Dimensions
out_dim = {'Very Small': 32, 'Small': 96, 'Medium': 128, 'Large': 192, 'Very Large': 256}
hidden_dim = {'Very Small': 64, 'Small': 192, 'Medium': 256, 'Large': 384, 'Very Large': 512}
params['out_dim'] = out_dim[params['embed_dim']]
params['hidden_dim'] = hidden_dim[params['embed_dim']]
# Popularity
use_popularity = {'No': False, 'Small': True, 'Medium': True, 'Large': True}
weight_popularity = {'No': 0, 'Small': .01, 'Medium': .05, 'Large': .1}
days_popularity = {'No': 0, 'Small': 7, 'Medium': 7, 'Large': 7}
params['use_popularity'] = use_popularity[params['popularity_importance']]
params['weight_popularity'] = weight_popularity[params['popularity_importance']]
params['days_popularity'] = days_popularity[params['popularity_importance']]
if fixed_params.duplicates == 'count_occurrence':
params['aggregator_type'] += '_edge'
# Make sure graph data is consistent with message passing parameters
if fixed_params.duplicates == 'count_occurrence':
assert params['aggregator_type'].endswith('edge')
else:
assert not params['aggregator_type'].endswith('edge')
valid_graph = create_graph(
data.graph_schema,
)
valid_graph = assign_graph_features(valid_graph,
fixed_params,
data,
**params,
)
dim_dict = {'user': valid_graph.nodes['user'].data['features'].shape[1],
'item': valid_graph.nodes['item'].data['features'].shape[1],
'out': params['out_dim'],
'hidden': params['hidden_dim']}
all_sids = None
if 'sport' in valid_graph.ntypes:
dim_dict['sport'] = valid_graph.nodes['sport'].data['features'].shape[1]
all_sids = np.arange(valid_graph.num_nodes('sport'))
# get training and test ids
(
train_graph,
train_eids_dict,
valid_eids_dict,
subtrain_uids,
valid_uids,
test_uids,
all_iids,
ground_truth_subtrain,
ground_truth_valid,
all_eids_dict
) = train_valid_split(
valid_graph,
data.ground_truth_test,
fixed_params.etype,
fixed_params.subtrain_size,
fixed_params.valid_size,
fixed_params.reverse_etype,
fixed_params.train_on_clicks,
fixed_params.remove_train_eids,
params['clicks_sample'],
params['purchases_sample'],
)
(
edgeloader_train,
edgeloader_valid,
nodeloader_subtrain,
nodeloader_valid,
nodeloader_test
) = generate_dataloaders(valid_graph,
train_graph,
train_eids_dict,
valid_eids_dict,
subtrain_uids,
valid_uids,
test_uids,
all_iids,
fixed_params,
num_workers,
all_sids,
embedding_layer=params['embedding_layer'],
n_layers=params['n_layers'],
neg_sample_size=params['neg_sample_size'],
)
train_eids_len = 0
valid_eids_len = 0
for etype in train_eids_dict.keys():
train_eids_len += len(train_eids_dict[etype])
valid_eids_len += len(valid_eids_dict[etype])
num_batches_train = math.ceil(train_eids_len / fixed_params.edge_batch_size)
num_batches_subtrain = math.ceil(
(len(subtrain_uids) + len(all_iids)) / fixed_params.node_batch_size
)
num_batches_val_loss = math.ceil(valid_eids_len / fixed_params.edge_batch_size)
num_batches_val_metrics = math.ceil(
(len(valid_uids) + len(all_iids)) / fixed_params.node_batch_size
)
num_batches_test = math.ceil(
(len(test_uids) + len(all_iids)) / fixed_params.node_batch_size
)
if fixed_params.neighbor_sampler == 'partial':
params['n_layers'] = 3
model = ConvModel(valid_graph,
params['n_layers'],
dim_dict,
params['norm'],
params['dropout'],
params['aggregator_type'],
fixed_params.pred,
params['aggregator_hetero'],
params['embedding_layer'],
)
if cuda:
model = model.to(device)
hp_sentence = params
hp_sentence.update(vars(fixed_params))
hp_sentence.update(
{
'cuda': cuda,
}
)
hp_sentence = f'{str(hp_sentence)[1: -1]} \n'
save_txt(f'\n \n START - Hyperparameters \n{hp_sentence}', data_paths.result_filepath, "a")
start_time = time.time()
# Train model
trained_model, viz, best_metrics = train_model(
model,
fixed_params.num_epochs,
num_batches_train,
num_batches_val_loss,
edgeloader_train,
edgeloader_valid,
max_margin_loss,
params['delta'],
params['neg_sample_size'],
params['use_recency'],
cuda,
device,
fixed_params.optimizer,
params['lr'],
get_metrics=True,
train_graph=train_graph,
valid_graph=valid_graph,
nodeloader_valid=nodeloader_valid,
nodeloader_subtrain=nodeloader_subtrain,
k=fixed_params.k,
out_dim=params['out_dim'],
num_batches_val_metrics=num_batches_val_metrics,
num_batches_subtrain=num_batches_subtrain,
bought_eids=train_eids_dict[('user', 'buys', 'item')],
ground_truth_subtrain=ground_truth_subtrain,
ground_truth_valid=ground_truth_valid,
remove_already_bought=True,
result_filepath=data_paths.result_filepath,
start_epoch=fixed_params.start_epoch,
patience=fixed_params.patience,
pred=params['pred'],
use_popularity=params['use_popularity'],
weight_popularity=params['weight_popularity'],
remove_false_negative=fixed_params.remove_false_negative,
embedding_layer=params['embedding_layer'],
)
elapsed = time.time() - start_time
result_to_save = f'\n {timedelta(seconds=elapsed)} \n END'
save_txt(result_to_save, data_paths.result_filepath, mode='a')
if visualization:
plot_train_loss(hp_sentence, viz)
# Report performance on validation set
sentence = ("BEST VALIDATION Precision "
"{:.3f}% | Recall {:.3f}% | Coverage {:.2f}%"
.format(best_metrics['precision'] * 100,
best_metrics['recall'] * 100,
best_metrics['coverage'] * 100))
log.info(sentence)
save_txt(sentence, data_paths.result_filepath, mode='a')
# Report performance on test set
log.debug('Test metrics start ...')
trained_model.eval()
with torch.no_grad():
embeddings = get_embeddings(valid_graph,
params['out_dim'],
trained_model,
nodeloader_test,
num_batches_test,
cuda,
device,
params['embedding_layer'],
)
for ground_truth in [data.ground_truth_purchase_test, data.ground_truth_test]:
precision, recall, coverage = get_metrics_at_k(
embeddings,
valid_graph,
trained_model,
params['out_dim'],
ground_truth,
all_eids_dict[('user', 'buys', 'item')],
fixed_params.k,
True, # Remove already bought
cuda,
device,
fixed_params.pred,
params['use_popularity'],
params['weight_popularity'],
)
sentence = ("TEST Precision "
"{:.3f}% | Recall {:.3f}% | Coverage {:.2f}%"
.format(precision * 100,
recall * 100,
coverage * 100))
log.info(sentence)
save_txt(sentence, data_paths.result_filepath, mode='a')
if check_embedding:
trained_model.eval()
with torch.no_grad():
log.debug('ANALYSIS OF RECOMMENDATIONS')
if 'sport' in train_graph.ntypes:
result_sport = explore_sports(embeddings,
data.sport_feat_df,
data.spt_id,
fixed_params.num_choices)
save_txt(result_sport, data_paths.result_filepath, mode='a')
already_bought_dict = create_already_bought(valid_graph,
all_eids_dict[('user', 'buys', 'item')],
)
already_clicked_dict = None
if fixed_params.discern_clicks:
already_clicked_dict = create_already_bought(valid_graph,
all_eids_dict[('user', 'clicks', 'item')],
etype='clicks',
)
users, items = data.ground_truth_test
ground_truth_dict = create_ground_truth(users, items)
user_ids = np.unique(users).tolist()
recs = get_recs(valid_graph,
embeddings,
trained_model,
params['out_dim'],
fixed_params.k,
user_ids,
already_bought_dict,
remove_already_bought=True,
pred=fixed_params.pred,
use_popularity=params['use_popularity'],
weight_popularity=params['weight_popularity'])
users, items = data.ground_truth_purchase_test
ground_truth_purchase_dict = create_ground_truth(users, items)
explore_recs(recs,
already_bought_dict,
already_clicked_dict,
ground_truth_dict,
ground_truth_purchase_dict,
data.item_feat_df,
fixed_params.num_choices,
data.pdt_id,
fixed_params.item_id_type,
data_paths.result_filepath)
if fixed_params.item_id_type == 'SPECIFIC ITEM_IDENTIFIER':
coverage_metrics = check_coverage(data.user_item_train,
data.item_feat_df,
data.pdt_id,
recs)
sentence = (
"COVERAGE \n|| All transactions : "
"Generic {:.1f}% | Junior {:.1f}% | Male {:.1f}% | Female {:.1f}% | Eco {:.1f}% "
"\n|| Recommendations : "
"Generic {:.1f}% | Junior {:.1f}% | Male {:.1f}% | Female {:.1f} | Eco {:.1f}%%"
.format(
coverage_metrics['generic_mean_whole'] * 100,
coverage_metrics['junior_mean_whole'] * 100,
coverage_metrics['male_mean_whole'] * 100,
coverage_metrics['female_mean_whole'] * 100,
coverage_metrics['eco_mean_whole'] * 100,
coverage_metrics['generic_mean_recs'] * 100,
coverage_metrics['junior_mean_recs'] * 100,
coverage_metrics['male_mean_recs'] * 100,
coverage_metrics['female_mean_recs'] * 100,
coverage_metrics['eco_mean_recs'] * 100,
)
)
log.info(sentence)
save_txt(sentence, data_paths.result_filepath, mode='a')
save_outputs(
{
'embeddings': embeddings,
'already_bought': already_bought_dict,
'already_clicked': already_bought_dict,
'ground_truth': ground_truth_dict,
'recs': recs,
},
'outputs/'
)
del params['remove']
# Save model if the recall is greater than 8%
if (recall > 0.08) & (fixed_params.item_id_type == 'SPECIFIC ITEM_IDENTIFIER') \
or (recall > 0.2) & (fixed_params.item_id_type == 'GENERAL ITEM_IDENTIFIER'):
date = str(datetime.datetime.now())[:-10].replace(' ', '')
torch.save(trained_model.state_dict(), f'models/HP_Recall_{recall * 100:.2f}_{date}.pth')
# Save all necessary params
save_outputs(
{
f'{date}_params': params,
f'{date}_fixed_params': vars(fixed_params),
},
'models/'
)
# Inference on different users
if fixed_params.run_inference > 0:
with torch.no_grad():
print('On normal params')
inference_recall = inference_hp.inference_fn(trained_model,
remove=fixed_params.remove_on_inference,
fixed_params=fixed_params,
overwrite_fixed_params=False,
**params)
if fixed_params.run_inference > 1:
print('For all users')
del params['days_of_purchases'], params['days_of_clicks'], params['lifespan_of_items']
all_users_inference_recall = inference_hp.inference_fn(trained_model,
remove=fixed_params.remove_on_inference,
fixed_params=fixed_params,
overwrite_fixed_params=True,
days_of_purchases=710,
days_of_clicks=710,
lifespan_of_items=710,
**params)
recap = f"BEST RECALL on 1) Validation set : {best_metrics['recall'] * 100:.2f}%" \
f'\n2) Test set : {recall * 100:.2f}%'
if fixed_params.run_inference == 1:
recap += f'\n3) On random users of {fixed_params.remove_on_inference} removed : {inference_recall * 100:.2f}'
recap += f"\nLoop took {timedelta(seconds=elapsed)} for {len(viz['train_loss_list'])} epochs, an average of " \
f"{timedelta(seconds=elapsed / len(viz['train_loss_list']))} per epoch"
print(recap)
save_txt(recap, data_paths.result_filepath, mode='a')
return recall # This is the 'test set' recall, on both purchases & clicks
class SearchableHyperparameters:
"""
All hyperparameters to optimize.
Attributes
----------
Aggregator_hetero :
How to aggregate messages from different types of edge relations. Choices : 'sum', 'max',
'min', 'mean', 'stack'. More info here
https://docs.dgl.ai/_modules/dgl/nn/pytorch/hetero.html
Aggregator_type :
How to aggregate neighborhood messages. Choices : 'mean', 'pool' for max pooling or 'lstm'
Clicks_sample :
Proportion of all clicks edges that should be used for training. Only relevant if
fixed_params.train_on_clicks == True
Days_popularity :
Number of days considered in Use_popularity
Dropout :
Dropout used on nodes features (at all layers of the GNN)
Embedding_layer :
Create an explicit embedding layer that projects user & item features into and embedding
of hidden_size dimension. If false, the embedding is done in the first layer of the GNN
model.
Purchases_sample :
Proportion of all purchase (i.e. 'buys') edges that should be used for training. If
fixed_params.discern_clicks == False, then 'clicks' edges are considered as 'purchases'
Norm :
Perform normalization after message aggregation
Use_popularity :
When computing ratings, add a score for items that were recent in the last X days
Use_recency :
When computing the loss, give more weights to more recent transactions
Weight_popularity :
Weight of the popularity score
"""
def __init__(self):
self.aggregator_hetero = Categorical(categories=['mean', 'sum', 'max'], name='aggregator_hetero')
self.aggregator_type = Categorical(categories=['mean', 'mean_nn', 'pool_nn'], name='aggregator_type') # LSTM?
self.clicks_sample = Categorical(categories=[.2, .3, .4], name='clicks_sample')
self.delta = Real(low=0.15, high=0.35, prior='log-uniform',
name='delta')
self.dropout = Real(low=0., high=0.8, prior='uniform',
name='dropout')
self.embed_dim = Categorical(categories=['Very Small', 'Small', 'Medium', 'Large', 'Very Large'],
name='embed_dim')
self.embedding_layer = Categorical(categories=[True, False], name='embedding_layer')
self.lr = Real(low=1e-4, high=1e-2, prior='log-uniform', name='lr')
self.n_layers = Integer(low=3, high=5, name='n_layers')
self.neg_sample_size = Integer(low=700, high=3000,
name='neg_sample_size')
self.norm = Categorical(categories=[True, False], name='norm')
self.popularity_importance = Categorical(categories=['No', 'Small', 'Medium', 'Large'],
name='popularity_importance')
self.purchases_sample = Categorical(categories=[.4, .5, .6], name='purchases_sample')
self.use_recency = Categorical(categories=[True, False], name='use_recency')
# List all the attributes in a list.
# This is equivalent to [self.hidden_dim_HP, self.out_dim_HP ...]
self.dimensions = [self.__getattribute__(attr)
for attr in dir(self) if '__' not in attr]
self.default_parameters = ['sum', 'mean_nn', .3, 0.266, .5, 'Medium', False,
0.00565, 3, 2500, True, 'No', .5, True]
searchable_params = SearchableHyperparameters()
fitness_params = None
@use_named_args(dimensions=searchable_params.dimensions)
def fitness(**params):
"""
Function used by skopt to find the best hyperparameter combination.
The function calls the train function defined earlier, with all needed parameters. The recall that is returned
is then multiplied by -1, since skopt is minimizing metrics.
"""
recall = train(**{**fitness_params, **params})
return -recall
@click.command()
@click.option('--from_beginning', count=True,
help='Continue with last trained model or not')
@click.option('-v', '--verbose', count=True, help='Verbosity')
@click.option('-viz', '--visualization', count=True, help='Visualize result')
@click.option('--check_embedding', count=True, help='Explore embedding result')
@click.option('--remove', default=.95, help='Data remove percentage')
@click.option('--num_epochs', default=10, help='Number of epochs')
@click.option('--start_epoch', default=0, help='Start epoch')
@click.option('--patience', default=3, help='Patience for early stopping')
@click.option('--edge_batch_size', default=2048, help='Number of edges in a train / validation batch')
@click.option('--item_id_type', default='SPECIFIC ITEM IDENTIFIER',
help='Identifier for the item. This code allows 2 types: SPECIFIC (e.g. item SKU'
'or GENERAL (e.g. item family)')
@click.option('--duplicates', default='keep_all',
help='How to handle duplicates. Choices: keep_all, keep_last, count_occurrence')
def main(from_beginning, verbose, visualization, check_embedding,
remove, num_epochs, start_epoch, patience, edge_batch_size,
item_id_type, duplicates):
"""
Main function that loads data and parameters, then runs hyperparameter loop with the fitness function.
"""
if verbose:
log.setLevel(logging.DEBUG)
else:
log.setLevel(logging.INFO)
data_paths = DataPaths()
fixed_params = FixedParameters(num_epochs, start_epoch, patience, edge_batch_size,
remove, item_id_type, duplicates)
checkpoint_saver = CheckpointSaver(
f'checkpoint{str(datetime.datetime.now())[:-10]}.pkl',
compress=9
)
data = DataLoader(data_paths, fixed_params)
global fitness_params
fitness_params = {
'data': data,
'fixed_params': fixed_params,
'data_paths': data_paths,
'visualization': visualization,
'check_embedding': check_embedding,
}
if from_beginning:
search_result = gp_minimize(
func=fitness,
dimensions=searchable_params.dimensions,
n_calls=200,
acq_func='EI',
x0=searchable_params.default_parameters,
callback=[checkpoint_saver],
random_state=46,
)
if not from_beginning:
checkpoint_path = None
if checkpoint_path is None:
checkpoint_path = get_last_checkpoint()
res = load(checkpoint_path)
x0 = res.x_iters
y0 = res.func_vals
search_result = gp_minimize(
func=fitness,
dimensions=searchable_params.dimensions,
n_calls=200,
n_initial_points=-len(x0), # Workaround suggested to correct the error when resuming training
acq_func='EI',
x0=x0,
y0=y0,
callback=[checkpoint_saver],
random_state=46
)
log.info(search_result)
if __name__ == '__main__':
main()