forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmisc.py
896 lines (780 loc) · 31.3 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
"""Functions to make simple plots with M/EEG data."""
from __future__ import print_function
# Authors: Alexandre Gramfort <[email protected]>
# Denis Engemann <[email protected]>
# Martin Luessi <[email protected]>
# Eric Larson <[email protected]>
# Cathy Nangini <[email protected]>
# Mainak Jas <[email protected]>
#
# License: Simplified BSD
import copy
from glob import glob
from itertools import cycle
import os.path as op
import warnings
import numpy as np
from scipy import linalg
from ..surface import read_surface
from ..externals.six import string_types
from ..io.proj import make_projector
from ..source_space import read_source_spaces, SourceSpaces
from ..utils import logger, verbose, get_subjects_dir, warn
from ..io.pick import pick_types
from ..filter import estimate_ringing_samples
from .utils import tight_layout, COLORS, _prepare_trellis, plt_show
@verbose
def plot_cov(cov, info, exclude=[], colorbar=True, proj=False, show_svd=True,
show=True, verbose=None):
"""Plot Covariance data.
Parameters
----------
cov : instance of Covariance
The covariance matrix.
info: dict
Measurement info.
exclude : list of string | str
List of channels to exclude. If empty do not exclude any channel.
If 'bads', exclude info['bads'].
colorbar : bool
Show colorbar or not.
proj : bool
Apply projections or not.
show_svd : bool
Plot also singular values of the noise covariance for each sensor
type. We show square roots ie. standard deviations.
show : bool
Show figure if True.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
fig_cov : instance of matplotlib.pyplot.Figure
The covariance plot.
fig_svd : instance of matplotlib.pyplot.Figure | None
The SVD spectra plot of the covariance.
"""
if exclude == 'bads':
exclude = info['bads']
ch_names = [n for n in cov.ch_names if n not in exclude]
ch_idx = [cov.ch_names.index(n) for n in ch_names]
info_ch_names = info['ch_names']
sel_eeg = pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude=exclude)
sel_mag = pick_types(info, meg='mag', eeg=False, ref_meg=False,
exclude=exclude)
sel_grad = pick_types(info, meg='grad', eeg=False, ref_meg=False,
exclude=exclude)
idx_eeg = [ch_names.index(info_ch_names[c])
for c in sel_eeg if info_ch_names[c] in ch_names]
idx_mag = [ch_names.index(info_ch_names[c])
for c in sel_mag if info_ch_names[c] in ch_names]
idx_grad = [ch_names.index(info_ch_names[c])
for c in sel_grad if info_ch_names[c] in ch_names]
idx_names = [(idx_eeg, 'EEG covariance', 'uV', 1e6),
(idx_grad, 'Gradiometers', 'fT/cm', 1e13),
(idx_mag, 'Magnetometers', 'fT', 1e15)]
idx_names = [(idx, name, unit, scaling)
for idx, name, unit, scaling in idx_names if len(idx) > 0]
C = cov.data[ch_idx][:, ch_idx]
if proj:
projs = copy.deepcopy(info['projs'])
# Activate the projection items
for p in projs:
p['active'] = True
P, ncomp, _ = make_projector(projs, ch_names)
if ncomp > 0:
logger.info(' Created an SSP operator (subspace dimension'
' = %d)' % ncomp)
C = np.dot(P, np.dot(C, P.T))
else:
logger.info(' The projection vectors do not apply to these '
'channels.')
import matplotlib.pyplot as plt
fig_cov, axes = plt.subplots(1, len(idx_names), squeeze=False,
figsize=(2.5 * len(idx_names), 2.7))
for k, (idx, name, _, _) in enumerate(idx_names):
axes[0, k].imshow(C[idx][:, idx], interpolation="nearest",
cmap='RdBu_r')
axes[0, k].set(title=name)
fig_cov.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.2, 0.26)
tight_layout(fig=fig_cov)
fig_svd = None
if show_svd:
fig_svd, axes = plt.subplots(1, len(idx_names), squeeze=False)
for k, (idx, name, unit, scaling) in enumerate(idx_names):
s = linalg.svd(C[idx][:, idx], compute_uv=False)
# Protect against true zero singular values
s[s <= 0] = 1e-10 * s[s > 0].min()
s = np.sqrt(s) * scaling
axes[0, k].plot(s)
axes[0, k].set(ylabel='Noise std (%s)' % unit, yscale='log',
xlabel='Eigenvalue index', title=name)
tight_layout(fig=fig_svd)
plt_show(show)
return fig_cov, fig_svd
def plot_source_spectrogram(stcs, freq_bins, tmin=None, tmax=None,
source_index=None, colorbar=False, show=True):
"""Plot source power in time-freqency grid.
Parameters
----------
stcs : list of SourceEstimate
Source power for consecutive time windows, one SourceEstimate object
should be provided for each frequency bin.
freq_bins : list of tuples of float
Start and end points of frequency bins of interest.
tmin : float
Minimum time instant to show.
tmax : float
Maximum time instant to show.
source_index : int | None
Index of source for which the spectrogram will be plotted. If None,
the source with the largest activation will be selected.
colorbar : bool
If true, a colorbar will be added to the plot.
show : bool
Show figure if True.
"""
import matplotlib.pyplot as plt
# Input checks
if len(stcs) == 0:
raise ValueError('cannot plot spectrogram if len(stcs) == 0')
stc = stcs[0]
if tmin is not None and tmin < stc.times[0]:
raise ValueError('tmin cannot be smaller than the first time point '
'provided in stcs')
if tmax is not None and tmax > stc.times[-1] + stc.tstep:
raise ValueError('tmax cannot be larger than the sum of the last time '
'point and the time step, which are provided in stcs')
# Preparing time-frequency cell boundaries for plotting
if tmin is None:
tmin = stc.times[0]
if tmax is None:
tmax = stc.times[-1] + stc.tstep
time_bounds = np.arange(tmin, tmax + stc.tstep, stc.tstep)
freq_bounds = sorted(set(np.ravel(freq_bins)))
freq_ticks = copy.deepcopy(freq_bounds)
# Reject time points that will not be plotted and gather results
source_power = []
for stc in stcs:
stc = stc.copy() # copy since crop modifies inplace
stc.crop(tmin, tmax - stc.tstep)
source_power.append(stc.data)
source_power = np.array(source_power)
# Finding the source with maximum source power
if source_index is None:
source_index = np.unravel_index(source_power.argmax(),
source_power.shape)[1]
# If there is a gap in the frequency bins record its locations so that it
# can be covered with a gray horizontal bar
gap_bounds = []
for i in range(len(freq_bins) - 1):
lower_bound = freq_bins[i][1]
upper_bound = freq_bins[i + 1][0]
if lower_bound != upper_bound:
freq_bounds.remove(lower_bound)
gap_bounds.append((lower_bound, upper_bound))
# Preparing time-frequency grid for plotting
time_grid, freq_grid = np.meshgrid(time_bounds, freq_bounds)
# Plotting the results
fig = plt.figure(figsize=(9, 6))
plt.pcolor(time_grid, freq_grid, source_power[:, source_index, :],
cmap='Reds')
ax = plt.gca()
plt.title('Time-frequency source power')
plt.xlabel('Time (s)')
plt.ylabel('Frequency (Hz)')
time_tick_labels = [str(np.round(t, 2)) for t in time_bounds]
n_skip = 1 + len(time_bounds) // 10
for i in range(len(time_bounds)):
if i % n_skip != 0:
time_tick_labels[i] = ''
ax.set_xticks(time_bounds)
ax.set_xticklabels(time_tick_labels)
plt.xlim(time_bounds[0], time_bounds[-1])
plt.yscale('log')
ax.set_yticks(freq_ticks)
ax.set_yticklabels([np.round(freq, 2) for freq in freq_ticks])
plt.ylim(freq_bounds[0], freq_bounds[-1])
plt.grid(True, ls='-')
if colorbar:
plt.colorbar()
tight_layout(fig=fig)
# Covering frequency gaps with horizontal bars
for lower_bound, upper_bound in gap_bounds:
plt.barh(lower_bound, time_bounds[-1] - time_bounds[0], upper_bound -
lower_bound, time_bounds[0], color='#666666')
plt_show(show)
return fig
def _plot_mri_contours(mri_fname, surfaces, src, orientation='coronal',
slices=None, show=True):
"""Plot BEM contours on anatomical slices."""
import matplotlib.pyplot as plt
import nibabel as nib
# plot axes (x, y, z) as data axes (0, 1, 2)
if orientation == 'coronal':
x, y, z = 0, 1, 2
elif orientation == 'axial':
x, y, z = 2, 0, 1
elif orientation == 'sagittal':
x, y, z = 2, 1, 0
else:
raise ValueError("Orientation must be 'coronal', 'axial' or "
"'sagittal'. Got %s." % orientation)
# Load the T1 data
nim = nib.load(mri_fname)
data = nim.get_data()
try:
affine = nim.affine
except AttributeError: # older nibabel
affine = nim.get_affine()
n_sag, n_axi, n_cor = data.shape
orientation_name2axis = dict(sagittal=0, axial=1, coronal=2)
orientation_axis = orientation_name2axis[orientation]
if slices is None:
n_slices = data.shape[orientation_axis]
slices = np.linspace(0, n_slices, 12, endpoint=False).astype(np.int)
# create of list of surfaces
surfs = list()
trans = linalg.inv(affine)
# XXX : next line is a hack don't ask why
trans[:3, -1] = [n_sag // 2, n_axi // 2, n_cor // 2]
for file_name, color in surfaces:
surf = dict()
surf['rr'], surf['tris'] = read_surface(file_name)
# move back surface to MRI coordinate system
surf['rr'] = nib.affines.apply_affine(trans, surf['rr'])
surfs.append((surf, color))
src_points = list()
if isinstance(src, SourceSpaces):
for src_ in src:
points = src_['rr'][src_['inuse'].astype(bool)] * 1e3
src_points.append(nib.affines.apply_affine(trans, points))
elif src is not None:
raise TypeError("src needs to be None or SourceSpaces instance, not "
"%s" % repr(src))
fig, axs = _prepare_trellis(len(slices), 4)
for ax, sl in zip(axs, slices):
# adjust the orientations for good view
if orientation == 'coronal':
dat = data[:, :, sl].transpose()
elif orientation == 'axial':
dat = data[:, sl, :]
elif orientation == 'sagittal':
dat = data[sl, :, :]
# First plot the anatomical data
ax.imshow(dat, cmap=plt.cm.gray)
ax.set_autoscale_on(False)
ax.axis('off')
# and then plot the contours on top
for surf, color in surfs:
ax.tricontour(surf['rr'][:, x], surf['rr'][:, y],
surf['tris'], surf['rr'][:, z],
levels=[sl], colors=color, linewidths=1.0,
zorder=1)
for sources in src_points:
in_slice = np.logical_and(sources[:, z] > sl - 0.5,
sources[:, z] < sl + 0.5)
ax.scatter(sources[in_slice, x], sources[in_slice, y], marker='.',
color='#FF00FF', s=1, zorder=2)
plt.subplots_adjust(left=0., bottom=0., right=1., top=1., wspace=0.,
hspace=0.)
plt_show(show)
return fig
def plot_bem(subject=None, subjects_dir=None, orientation='coronal',
slices=None, brain_surfaces=None, src=None, show=True):
"""Plot BEM contours on anatomical slices.
Parameters
----------
subject : str
Subject name.
subjects_dir : str | None
Path to the SUBJECTS_DIR. If None, the path is obtained by using
the environment variable SUBJECTS_DIR.
orientation : str
'coronal' or 'axial' or 'sagittal'.
slices : list of int
Slice indices.
brain_surfaces : None | str | list of str
One or more brain surface to plot (optional). Entries should correspond
to files in the subject's ``surf`` directory (e.g. ``"white"``).
src : None | SourceSpaces | str
SourceSpaces instance or path to a source space to plot individual
sources as scatter-plot. Only sources lying in the shown slices will be
visible, sources that lie between visible slices are not shown. Path
can be absolute or relative to the subject's ``bem`` folder.
show : bool
Show figure if True.
Returns
-------
fig : Instance of matplotlib.figure.Figure
The figure.
See Also
--------
mne.viz.plot_alignment
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
# Get the MRI filename
mri_fname = op.join(subjects_dir, subject, 'mri', 'T1.mgz')
if not op.isfile(mri_fname):
raise IOError('MRI file "%s" does not exist' % mri_fname)
# Get the BEM surface filenames
bem_path = op.join(subjects_dir, subject, 'bem')
if not op.isdir(bem_path):
raise IOError('Subject bem directory "%s" does not exist' % bem_path)
surfaces = []
for surf_name, color in (('*inner_skull', '#FF0000'),
('*outer_skull', '#FFFF00'),
('*outer_skin', '#FFAA80')):
surf_fname = glob(op.join(bem_path, surf_name + '.surf'))
if len(surf_fname) > 0:
surf_fname = surf_fname[0]
logger.info("Using surface: %s" % surf_fname)
surfaces.append((surf_fname, color))
if brain_surfaces is not None:
if isinstance(brain_surfaces, string_types):
brain_surfaces = (brain_surfaces,)
for surf_name in brain_surfaces:
for hemi in ('lh', 'rh'):
surf_fname = op.join(subjects_dir, subject, 'surf',
hemi + '.' + surf_name)
if op.exists(surf_fname):
surfaces.append((surf_fname, '#00DD00'))
else:
raise IOError("Surface %s does not exist." % surf_fname)
if isinstance(src, string_types):
if not op.exists(src):
src_ = op.join(subjects_dir, subject, 'bem', src)
if op.exists(src_):
src = src_
else:
raise IOError("%s does not exist" % src)
src = read_source_spaces(src)
elif src is not None and not isinstance(src, SourceSpaces):
raise TypeError("src needs to be None, str or SourceSpaces instance, "
"not %s" % repr(src))
if len(surfaces) == 0:
raise IOError('No surface files found. Surface files must end with '
'inner_skull.surf, outer_skull.surf or outer_skin.surf')
# Plot the contours
return _plot_mri_contours(mri_fname, surfaces, src, orientation, slices,
show)
def plot_events(events, sfreq=None, first_samp=0, color=None, event_id=None,
axes=None, equal_spacing=True, show=True):
"""Plot events to get a visual display of the paradigm.
Parameters
----------
events : array, shape (n_events, 3)
The events.
sfreq : float | None
The sample frequency. If None, data will be displayed in samples (not
seconds).
first_samp : int
The index of the first sample. Typically the raw.first_samp
attribute. It is needed for recordings on a Neuromag
system as the events are defined relative to the system
start and not to the beginning of the recording.
color : dict | None
Dictionary of event_id value and its associated color. If None,
colors are automatically drawn from a default list (cycled through if
number of events longer than list of default colors).
event_id : dict | None
Dictionary of event label (e.g. 'aud_l') and its associated
event_id value. Label used to plot a legend. If None, no legend is
drawn.
axes : instance of matplotlib.axes.AxesSubplot
The subplot handle.
equal_spacing : bool
Use equal spacing between events in y-axis.
show : bool
Show figure if True.
Returns
-------
fig : matplotlib.figure.Figure
The figure object containing the plot.
Notes
-----
.. versionadded:: 0.9.0
"""
if sfreq is None:
sfreq = 1.0
xlabel = 'samples'
else:
xlabel = 'Time (s)'
events = np.asarray(events)
unique_events = np.unique(events[:, 2])
if event_id is not None:
# get labels and unique event ids from event_id dict,
# sorted by value
event_id_rev = dict((v, k) for k, v in event_id.items())
conditions, unique_events_id = zip(*sorted(event_id.items(),
key=lambda x: x[1]))
for this_event in unique_events_id:
if this_event not in unique_events:
raise ValueError('%s from event_id is not present in events.'
% this_event)
for this_event in unique_events:
if this_event not in unique_events_id:
warn('event %s missing from event_id will be ignored'
% this_event)
else:
unique_events_id = unique_events
color = _handle_event_colors(unique_events, color, unique_events_id)
import matplotlib.pyplot as plt
fig = None
if axes is None:
fig = plt.figure()
ax = axes if axes else plt.gca()
unique_events_id = np.array(unique_events_id)
min_event = np.min(unique_events_id)
max_event = np.max(unique_events_id)
for idx, ev in enumerate(unique_events_id):
ev_mask = events[:, 2] == ev
kwargs = {}
if event_id is not None:
event_label = '{0} ({1})'.format(event_id_rev[ev],
np.sum(ev_mask))
kwargs['label'] = event_label
if ev in color:
kwargs['color'] = color[ev]
if equal_spacing:
ax.plot((events[ev_mask, 0] - first_samp) / sfreq,
(idx + 1) * np.ones(ev_mask.sum()), '.', **kwargs)
else:
ax.plot((events[ev_mask, 0] - first_samp) / sfreq,
events[ev_mask, 2], '.', **kwargs)
if equal_spacing:
ax.set_ylim(0, unique_events_id.size + 1)
ax.set_yticks(1 + np.arange(unique_events_id.size))
ax.set_yticklabels(unique_events_id)
else:
ax.set_ylim([min_event - 1, max_event + 1])
ax.set_xlabel(xlabel)
ax.set_ylabel('Events id')
ax.grid('on')
fig = fig if fig is not None else plt.gcf()
if event_id is not None:
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
fig.canvas.draw()
plt_show(show)
return fig
def _get_presser(fig):
"""Get our press callback."""
callbacks = fig.canvas.callbacks.callbacks['button_press_event']
func = None
for key, val in callbacks.items():
if val.func.__class__.__name__ == 'partial':
func = val.func
break
assert func is not None
return func
def plot_dipole_amplitudes(dipoles, colors=None, show=True):
"""Plot the amplitude traces of a set of dipoles.
Parameters
----------
dipoles : list of instance of Dipoles
The dipoles whose amplitudes should be shown.
colors: list of colors | None
Color to plot with each dipole. If None default colors are used.
show : bool
Show figure if True.
Returns
-------
fig : matplotlib.figure.Figure
The figure object containing the plot.
Notes
-----
.. versionadded:: 0.9.0
"""
import matplotlib.pyplot as plt
if colors is None:
colors = cycle(COLORS)
fig, ax = plt.subplots(1, 1)
xlim = [np.inf, -np.inf]
for dip, color in zip(dipoles, colors):
ax.plot(dip.times, dip.amplitude * 1e9, color=color, linewidth=1.5)
xlim[0] = min(xlim[0], dip.times[0])
xlim[1] = max(xlim[1], dip.times[-1])
ax.set_xlim(xlim)
ax.set_xlabel('Time (sec)')
ax.set_ylabel('Amplitude (nAm)')
if show:
fig.show(warn=False)
return fig
def adjust_axes(axes, remove_spines=('top', 'right'), grid=True):
"""Adjust some properties of axes.
Parameters
----------
axes : list
List of axes to process.
remove_spines : list of str
Which axis spines to remove.
grid : bool
Turn grid on (True) or off (False).
"""
axes = [axes] if not isinstance(axes, (list, tuple, np.ndarray)) else axes
for ax in axes:
if grid:
ax.grid(zorder=0)
for key in remove_spines:
ax.spines[key].set_visible(False)
def _filter_ticks(lims, fscale):
"""Create approximately spaced ticks between lims."""
if fscale == 'linear':
return None, None # let matplotlib handle it
lims = np.array(lims)
ticks = list()
for exp in range(int(np.floor(np.log10(lims[0]))),
int(np.floor(np.log10(lims[1]))) + 1):
ticks += (np.array([1, 2, 4]) * (10 ** exp)).tolist()
ticks = np.array(ticks)
ticks = ticks[(ticks >= lims[0]) & (ticks <= lims[1])]
ticklabels = [('%g' if t < 1 else '%d') % t for t in ticks]
return ticks, ticklabels
def _get_flim(flim, fscale, freq, sfreq=None):
"""Get reasonable frequency limits."""
if flim is None:
if freq is None:
flim = [0.1 if fscale == 'log' else 0., sfreq / 2.]
else:
if fscale == 'linear':
flim = [freq[0]]
else:
flim = [freq[0] if freq[0] > 0 else 0.1 * freq[1]]
flim += [freq[-1]]
if fscale == 'log':
if flim[0] <= 0:
raise ValueError('flim[0] must be positive, got %s' % flim[0])
elif flim[0] < 0:
raise ValueError('flim[0] must be non-negative, got %s' % flim[0])
return flim
def _check_fscale(fscale):
"""Check for valid fscale."""
if not isinstance(fscale, string_types) or fscale not in ('log', 'linear'):
raise ValueError('fscale must be "log" or "linear", got %s'
% (fscale,))
def plot_filter(h, sfreq, freq=None, gain=None, title=None, color='#1f77b4',
flim=None, fscale='log', alim=(-60, 10), show=True):
"""Plot properties of a filter.
Parameters
----------
h : dict or ndarray
An IIR dict or 1D ndarray of coefficients (for FIR filter).
sfreq : float
Sample rate of the data (Hz).
freq : array-like or None
The ideal response frequencies to plot (must be in ascending order).
If None (default), do not plot the ideal response.
gain : array-like or None
The ideal response gains to plot.
If None (default), do not plot the ideal response.
title : str | None
The title to use. If None (default), deteremine the title based
on the type of the system.
color : color object
The color to use (default '#1f77b4').
flim : tuple or None
If not None, the x-axis frequency limits (Hz) to use.
If None, freq will be used. If None (default) and freq is None,
``(0.1, sfreq / 2.)`` will be used.
fscale : str
Frequency scaling to use, can be "log" (default) or "linear".
alim : tuple
The y-axis amplitude limits (dB) to use (default: (-60, 10)).
show : bool
Show figure if True (default).
Returns
-------
fig : matplotlib.figure.Figure
The figure containing the plots.
See Also
--------
mne.filter.create_filter
plot_ideal_filter
Notes
-----
.. versionadded:: 0.14
"""
from scipy.signal import freqz, group_delay
import matplotlib.pyplot as plt
sfreq = float(sfreq)
_check_fscale(fscale)
flim = _get_flim(flim, fscale, freq, sfreq)
if fscale == 'log':
omega = np.logspace(np.log10(flim[0]), np.log10(flim[1]), 1000)
else:
omega = np.linspace(flim[0], flim[1], 1000)
omega /= sfreq / (2 * np.pi)
if isinstance(h, dict): # IIR h.ndim == 2: # second-order sections
if 'sos' in h:
from scipy.signal import sosfilt
h = h['sos']
H = np.ones(len(omega), np.complex128)
gd = np.zeros(len(omega))
for section in h:
this_H = freqz(section[:3], section[3:], omega)[1]
H *= this_H
with warnings.catch_warnings(record=True): # singular GD
gd += group_delay((section[:3], section[3:]), omega)[1]
n = estimate_ringing_samples(h)
delta = np.zeros(n)
delta[0] = 1
h = sosfilt(h, delta)
else:
from scipy.signal import lfilter
n = estimate_ringing_samples((h['b'], h['a']))
delta = np.zeros(n)
delta[0] = 1
H = freqz(h['b'], h['a'], omega)[1]
with warnings.catch_warnings(record=True): # singular GD
gd = group_delay((h['b'], h['a']), omega)[1]
h = lfilter(h['b'], h['a'], delta)
title = 'SOS (IIR) filter' if title is None else title
else:
H = freqz(h, worN=omega)[1]
with warnings.catch_warnings(record=True): # singular GD
gd = group_delay((h, [1.]), omega)[1]
title = 'FIR filter' if title is None else title
gd /= sfreq
fig, axes = plt.subplots(3) # eventually axes could be a parameter
t = np.arange(len(h)) / sfreq
f = omega * sfreq / (2 * np.pi)
axes[0].plot(t, h, color=color)
axes[0].set(xlim=t[[0, -1]], xlabel='Time (sec)',
ylabel='Amplitude h(n)', title=title)
mag = 10 * np.log10(np.maximum((H * H.conj()).real, 1e-20))
axes[1].plot(f, mag, color=color, linewidth=2, zorder=4)
if freq is not None and gain is not None:
plot_ideal_filter(freq, gain, axes[1], fscale=fscale,
title=None, show=False)
axes[1].set(ylabel='Magnitude (dB)', xlabel='', xscale=fscale)
sl = slice(0 if fscale == 'linear' else 1, None, None)
axes[2].plot(f[sl], gd[sl], color=color, linewidth=2, zorder=4)
axes[2].set(xlim=flim, ylabel='Group delay (sec)', xlabel='Frequency (Hz)',
xscale=fscale)
xticks, xticklabels = _filter_ticks(flim, fscale)
dlim = [0, 1.05 * gd[1:].max()]
for ax, ylim, ylabel in zip(axes[1:], (alim, dlim),
('Amplitude (dB)', 'Delay (sec)')):
if xticks is not None:
ax.set(xticks=xticks)
ax.set(xticklabels=xticklabels)
ax.set(xlim=flim, ylim=ylim, xlabel='Frequency (Hz)', ylabel=ylabel)
adjust_axes(axes)
tight_layout()
plt_show(show)
return fig
def plot_ideal_filter(freq, gain, axes=None, title='', flim=None, fscale='log',
alim=(-60, 10), color='r', alpha=0.5, linestyle='--',
show=True):
"""Plot an ideal filter response.
Parameters
----------
freq : array-like
The ideal response frequencies to plot (must be in ascending order).
gain : array-like or None
The ideal response gains to plot.
axes : instance of matplotlib.axes.AxesSubplot | None
The subplot handle. With None (default), axes are created.
title : str
The title to use, (default: '').
flim : tuple or None
If not None, the x-axis frequency limits (Hz) to use.
If None (default), freq used.
fscale : str
Frequency scaling to use, can be "log" (default) or "linear".
alim : tuple
If not None (default), the y-axis limits (dB) to use.
color : color object
The color to use (default: 'r').
alpha : float
The alpha to use (default: 0.5).
linestyle : str
The line style to use (default: '--').
show : bool
Show figure if True (default).
Returns
-------
fig : Instance of matplotlib.figure.Figure
The figure.
See Also
--------
plot_filter
Notes
-----
.. versionadded:: 0.14
Examples
--------
Plot a simple ideal band-pass filter::
>>> from mne.viz import plot_ideal_filter
>>> freq = [0, 1, 40, 50]
>>> gain = [0, 1, 1, 0]
>>> plot_ideal_filter(freq, gain, flim=(0.1, 100)) #doctest: +ELLIPSIS
<matplotlib.figure.Figure object at ...>
"""
import matplotlib.pyplot as plt
xs, ys = list(), list()
my_freq, my_gain = list(), list()
if freq[0] != 0:
raise ValueError('freq should start with DC (zero) and end with '
'Nyquist, but got %s for DC' % (freq[0],))
freq = np.array(freq)
# deal with semilogx problems @ x=0
_check_fscale(fscale)
if fscale == 'log':
freq[0] = 0.1 * freq[1] if flim is None else min(flim[0], freq[1])
flim = _get_flim(flim, fscale, freq)
for ii in range(len(freq)):
xs.append(freq[ii])
ys.append(alim[0])
if ii < len(freq) - 1 and gain[ii] != gain[ii + 1]:
xs += [freq[ii], freq[ii + 1]]
ys += [alim[1]] * 2
my_freq += np.linspace(freq[ii], freq[ii + 1], 20,
endpoint=False).tolist()
my_gain += np.linspace(gain[ii], gain[ii + 1], 20,
endpoint=False).tolist()
else:
my_freq.append(freq[ii])
my_gain.append(gain[ii])
my_gain = 10 * np.log10(np.maximum(my_gain, 10 ** (alim[0] / 10.)))
if axes is None:
axes = plt.subplots(1)[1]
xs = np.maximum(xs, flim[0])
axes.fill_between(xs, alim[0], ys, color=color, alpha=0.1)
axes.plot(my_freq, my_gain, color=color, linestyle=linestyle, alpha=0.5,
linewidth=4, zorder=3)
xticks, xticklabels = _filter_ticks(flim, fscale)
axes.set(ylim=alim, xlabel='Frequency (Hz)', ylabel='Amplitude (dB)',
xscale=fscale)
if xticks is not None:
axes.set(xticks=xticks)
axes.set(xticklabels=xticklabels)
axes.set(xlim=flim)
adjust_axes(axes)
tight_layout()
plt_show(show)
return axes.figure
def _handle_event_colors(unique_events, color, unique_events_id):
"""Handle event colors."""
if color is None:
if len(unique_events) > len(COLORS):
warn('More events than colors available. You should pass a list '
'of unique colors.')
colors = cycle(COLORS)
color = dict()
for this_event, this_color in zip(sorted(unique_events_id), colors):
color[this_event] = this_color
else:
for this_event in color:
if this_event not in unique_events_id:
raise ValueError('%s from color is not present in events '
'or event_id.' % this_event)
for this_event in unique_events_id:
if this_event not in color:
warn('Color is not available for event %d. Default colors '
'will be used.' % this_event)
return color