forked from hengyuan-hu/bottom-up-attention-vqa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_grid_imsitu_verbiter_clean_cnn_newmodel.py
461 lines (343 loc) · 19.4 KB
/
main_grid_imsitu_verbiter_clean_cnn_newmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import torch
from imsitu_encoder_alldata_imsitu import imsitu_encoder
from imsitu_loader import imsitu_loader_roleq_buatt_with_cnn_ordered
from imsitu_scorer_log import imsitu_scorer
import json
import os
import utils_imsitu
import time
import random
#from torchviz import make_dot
#from graphviz import Digraph
from dataset import Dictionary
import base_model
def train(model, train_loader, dev_loader, traindev_loader, optimizer, scheduler, max_epoch, model_dir, encoder, gpu_mode, clip_norm, lr_max, model_name, model_saving_name, args,eval_frequency=4000):
model.train()
train_loss = 0
total_steps = 0
print_freq = 400
dev_score_list = []
time_all = time.time()
if gpu_mode >= 0 :
ngpus = 2
device_array = [i for i in range(0,ngpus)]
pmodel = torch.nn.DataParallel(model, device_ids=device_array)
else:
pmodel = model
#pmodel = model
'''if scheduler.get_lr()[0] < lr_max:
scheduler.step()'''
top1 = imsitu_scorer(encoder, 1, 3)
top5 = imsitu_scorer(encoder, 5, 3)
'''print('init param data check :')
for f in model.parameters():
if f.requires_grad:
print(f.data.size())'''
for epoch in range(max_epoch):
#print('current sample : ', i, img.size(), verb.size(), roles.size(), labels.size())
#sizes batch_size*3*height*width, batch*504*1, batch*6*190*1, batch*3*6*lebale_count*1
mx = len(train_loader)
for i, (img_id, img, verb, labels) in enumerate(train_loader):
#print("epoch{}-{}/{} batches\r".format(epoch,i+1,mx)) ,
t0 = time.time()
t1 = time.time()
total_steps += 1
if gpu_mode >= 0:
img = torch.autograd.Variable(img.cuda())
verb = torch.autograd.Variable(verb.cuda())
labels = torch.autograd.Variable(labels.cuda())
else:
img = torch.autograd.Variable(img)
verb = torch.autograd.Variable(verb)
labels = torch.autograd.Variable(labels)
'''print('all inputs')
print(img)
print('=========================================================================')
print(verb)
print('=========================================================================')
print(roles)
print('=========================================================================')
print(labels)'''
logits_verb, logits_plzagent = pmodel(img, verb)
loss1 = model.calculate_loss_with_verbs(logits_verb, verb, logits_plzagent, labels)
#verb_predict, rol1pred, role_predict = pmodel.forward_eval5(img)
#print ("forward time = {}".format(time.time() - t1))
t1 = time.time()
loss = loss1
'''g = make_dot(verb_predict, model.state_dict())
g.view()'''
#loss = model.calculate_loss(verb, role_predict, labels, args)
#loss = model.calculate_eval_loss_new(verb_predict, verb, rol1pred, labels, args)
#loss = loss_ * random.random() #try random loss
#print ("loss time = {}".format(time.time() - t1))
t1 = time.time()
#print('current loss = ', loss)
loss.backward()
#print ("backward time = {}".format(time.time() - t1))
torch.nn.utils.clip_grad_norm_(model.parameters(), clip_norm)
'''for param in filter(lambda p: p.requires_grad,model.parameters()):
print(param.grad.data.sum())'''
#start debugger
#import pdb; pdb.set_trace()
''''print('grad check :')
for f in model.convnet.resnet.conv1.parameters():
print('data is')
print(f.data)
print('grad is')
print(f.grad)
print('========================================================================================')
print('========================================================================================')
print('========================================================================================')'''
optimizer.step()
optimizer.zero_grad()
train_loss += loss.item()
#top1.add_point_eval5(verb_predict, verb, role_predict, labels)
#top5.add_point_eval5(verb_predict, verb, role_predict, labels)
top1.add_point_verb_only_eval(img_id, logits_verb, verb)
top5.add_point_verb_only_eval(img_id, logits_verb, verb)
if total_steps % print_freq == 0:
top1_a = top1.get_average_results()
top5_a = top5.get_average_results()
print ("{},{},{}, {} , {}, loss = {:.2f}, avg loss = {:.2f}"
.format(total_steps-1,epoch,i, utils_imsitu.format_dict(top1_a, "{:.2f}", "1-"),
utils_imsitu.format_dict(top5_a,"{:.2f}","5-"), loss.item(),
train_loss / ((total_steps-1)%eval_frequency) ))
if total_steps % eval_frequency == 0:
top1, top5, val_loss = eval(model, dev_loader, encoder, gpu_mode)
model.train()
top1_avg = top1.get_average_results()
top5_avg = top5.get_average_results()
avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
avg_score /= 8
print ('Dev {} average :{:.2f} {} {}'.format(total_steps-1, avg_score*100,
utils_imsitu.format_dict(top1_avg,'{:.2f}', '1-'),
utils_imsitu.format_dict(top5_avg, '{:.2f}', '5-')))
#print('Dev loss :', val_loss)
dev_score_list.append(avg_score)
max_score = max(dev_score_list)
if max_score == dev_score_list[-1]:
torch.save(model.state_dict(), model_dir + "/{}_{}.model".format( model_name, model_saving_name))
print ('New best model saved! {0}'.format(max_score))
#eval on the trainset
'''top1, top5, val_loss = eval(model, traindev_loader, encoder, gpu_mode)
model.train()
top1_avg = top1.get_average_results()
top5_avg = top5.get_average_results()
avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
avg_score /= 8
print ('TRAINDEV {} average :{:.2f} {} {}'.format(total_steps-1, avg_score*100,
utils.format_dict(top1_avg,'{:.2f}', '1-'),
utils.format_dict(top5_avg, '{:.2f}', '5-')))'''
print('current train loss', train_loss)
train_loss = 0
top1 = imsitu_scorer(encoder, 1, 3)
top5 = imsitu_scorer(encoder, 5, 3)
del logits_verb, logits_plzagent, loss, img, verb, labels
#break
print('Epoch ', epoch, ' completed!')
scheduler.step()
#break
def eval(model, dev_loader, encoder, gpu_mode, write_to_file = False):
model.eval()
val_loss = 0
print ('evaluating model...')
top1 = imsitu_scorer(encoder, 1, 3, write_to_file)
top5 = imsitu_scorer(encoder, 5, 3)
with torch.no_grad():
mx = len(dev_loader)
for i, (img_id, img, verb, labels) in enumerate(dev_loader):
#print("{}/{} batches\r".format(i+1,mx)) ,
'''im_data = torch.squeeze(im_data,0)
im_info = torch.squeeze(im_info,0)
gt_boxes = torch.squeeze(gt_boxes,0)
num_boxes = torch.squeeze(num_boxes,0)
verb = torch.squeeze(verb,0)
roles = torch.squeeze(roles,0)
labels = torch.squeeze(labels,0)'''
if gpu_mode >= 0:
img = torch.autograd.Variable(img.cuda())
verb = torch.autograd.Variable(verb.cuda())
labels = torch.autograd.Variable(labels.cuda())
else:
img = torch.autograd.Variable(img)
verb = torch.autograd.Variable(verb)
labels = torch.autograd.Variable(labels)
logits_verb, logits_plzagent = model(img, verb)
'''loss = model.calculate_eval_loss(verb_predict, verb, role_predict, labels)
val_loss += loss.item()'''
if write_to_file:
top1.add_point_verb_only_eval(img_id, logits_verb, verb)
top5.add_point_verb_only_eval(img_id, logits_verb, verb)
else:
top1.add_point_verb_only_eval(img_id, logits_verb, verb)
top5.add_point_verb_only_eval(img_id, logits_verb, verb)
del logits_verb, logits_plzagent, img, verb, labels
#break
#return top1, top5, val_loss/mx
return top1, top5, 0
def main():
import argparse
parser = argparse.ArgumentParser(description="imsitu VSRL. Training, evaluation and prediction.")
parser.add_argument("--gpuid", default=-1, help="put GPU id > -1 in GPU mode", type=int)
#parser.add_argument("--command", choices = ["train", "eval", "resume", 'predict'], required = True)
parser.add_argument('--resume_training', action='store_true', help='Resume training from the model [resume_model]')
parser.add_argument('--resume_model', type=str, default='', help='The model we resume')
parser.add_argument('--use_pretrained_cnn', action='store_true', help='cnn fix, verb finetune, role train from the scratch')
parser.add_argument('--pre_trained_cnn_model', type=str, default='', help='The model we resume')
parser.add_argument('--pretrained_buatt_model', type=str, default='', help='pretrained verb module')
parser.add_argument('--train_role', action='store_true', help='cnn fix, verb fix, role train from the scratch')
parser.add_argument('--use_pretrained_buatt', action='store_true', help='cnn fix, verb finetune, role train from the scratch')
parser.add_argument('--finetune_cnn', action='store_true', help='cnn finetune, verb finetune, role train from the scratch')
parser.add_argument('--output_dir', type=str, default='./trained_models', help='Location to output the model')
parser.add_argument('--evaluate', action='store_true', help='Only use the testing mode')
parser.add_argument('--test', action='store_true', help='Only use the testing mode')
parser.add_argument('--dataset_folder', type=str, default='./imSitu', help='Location of annotations')
parser.add_argument('--imgset_dir', type=str, default='./resized_256', help='Location of original images')
parser.add_argument('--frcnn_feat_dir', type=str, help='Location of output from detectron')
parser.add_argument('--train_file', default="train_freq2000.json", type=str, help='trainfile name')
parser.add_argument('--dev_file', default="dev_freq2000.json", type=str, help='dev file name')
parser.add_argument('--test_file', default="test_freq2000.json", type=str, help='test file name')
parser.add_argument('--model_saving_name', type=str, help='save name of the outpul model')
parser.add_argument('--epochs', type=int, default=500)
parser.add_argument('--num_hid', type=int, default=1024)
parser.add_argument('--model', type=str, default='baseline0grid_imsitu_verb_with_cnn_newmodel')
parser.add_argument('--output', type=str, default='saved_models/exp0')
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--num_iter', type=int, default=1)
parser.add_argument('--seed', type=int, default=1111, help='random seed')
#parser.add_argument('--role_module', type=str, default='', help='pretrained role module')
#todo: train role module separately with gt verbs
args = parser.parse_args()
clip_norm = 0.25
n_epoch = args.epochs
batch_size = args.batch_size
n_worker = 3
#dataset_folder = 'imSitu'
#imgset_folder = 'resized_256'
dataset_folder = args.dataset_folder
imgset_folder = args.imgset_dir
print('model spec :, top down att with role q ')
train_set = json.load(open(dataset_folder + '/' + args.train_file))
imsitu_roleq = json.load(open("data/imsitu_questions_prev.json"))
dict_path = 'data/dictionary_imsitu_final.pkl'
dictionary = Dictionary.load_from_file(dict_path)
w_emb_path = 'data/glove6b_init_imsitu_final_300d.npy'
encoder = imsitu_encoder(train_set, imsitu_roleq, dictionary)
train_set = imsitu_loader_roleq_buatt_with_cnn_ordered(imgset_folder, train_set, encoder, dictionary, 'train', encoder.train_transform)
#get role_model
constructor = 'build_%s' % args.model
model = getattr(base_model, constructor)(args.num_hid, encoder.get_num_roles(),encoder.get_num_verbs(), encoder.get_num_labels(), encoder, args.num_iter)
#print('MODEL :', model)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=n_worker)
dev_set = json.load(open(dataset_folder + '/' + args.dev_file))
dev_set = imsitu_loader_roleq_buatt_with_cnn_ordered(imgset_folder, dev_set, encoder, dictionary, 'val', encoder.dev_transform)
dev_loader = torch.utils.data.DataLoader(dev_set, batch_size=batch_size, shuffle=True, num_workers=n_worker)
test_set = json.load(open(dataset_folder + '/' + args.test_file))
test_set = imsitu_loader_roleq_buatt_with_cnn_ordered(imgset_folder, test_set, encoder, dictionary, 'test', encoder.dev_transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=True, num_workers=n_worker)
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
#torch.manual_seed(1234)
torch.manual_seed(args.seed)
if args.gpuid >= 0:
#print('GPU enabled')
model.cuda()
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.benchmark = True
if args.resume_training:
print('Resume training from: {}'.format(args.resume_model))
args.train_all = True
if len(args.resume_model) == 0:
raise Exception('[pretrained module] not specified')
utils_imsitu.load_net(args.resume_model, [model])
optimizer_select = 0
optimizer = torch.optim.Adamax(model.parameters(), lr=1e-3)
model_name = 'resume_all'
elif args.use_pretrained_cnn:
print('use pretrained cnn.')
model_name = 'pretrain_cnn_full'
utils_imsitu.set_trainable(model, True)
utils_imsitu.load_net(args.pre_trained_cnn_model, [model.convnet], ['convnet'])
utils_imsitu.set_trainable(model.convnet, False)
#{'params': model.convnet.parameters(), 'lr': 5e-5},
optimizer = torch.optim.Adamax([
{'params': model.classifier.parameters()},
{'params': model.place_classifier.parameters()},
{'params': model.agent_classifier.parameters()},
{'params': model.role_emb.parameters()},
{'params': model.verb_emb.parameters()},
{'params': model.query_composer.parameters()},
{'params': model.resize_ctx.parameters()},
{'params': model.q_emb2.parameters()},
{'params': model.lstm_proj2.parameters()},
{'params': model.ctx_att.parameters()},
{'params': model.v_att.parameters()},
{'params': model.q_net.parameters()},
{'params': model.v_net.parameters()},
], lr=1e-3)
else:
print('Training from the scratch.')
model_name = 'train_full'
utils_imsitu.set_trainable(model, True)
#utils_imsitu.load_net(args.pre_trained_cnn_model, [model.convnet], ['convnet'])
#utils_imsitu.set_trainable(model.convnet, False)
#{'params': model.convnet.parameters(), 'lr': 5e-5},
optimizer = torch.optim.Adamax([
{'params': model.convnet.parameters(), 'lr': 5e-5},
{'params': model.verb_classifier.parameters()},
{'params': model.classifier.parameters()},
{'params': model.role_emb.parameters()},
{'params': model.query_composer.parameters()},
{'params': model.resize_ctx.parameters()},
{'params': model.q_emb2.parameters()},
{'params': model.lstm_proj2.parameters()},
{'params': model.ctx_att.parameters()},
{'params': model.v_att.parameters()},
{'params': model.q_net.parameters()},
{'params': model.v_net.parameters()},
], lr=2e-3)
#utils_imsitu.set_trainable(model, True)
#optimizer = torch.optim.Adamax(model.parameters(), lr=1e-3)
#optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
#scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_step, gamma=lr_gamma)
#gradient clipping, grad check
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
if args.evaluate:
top1, top5, val_loss = eval(model, dev_loader, encoder, args.gpuid, write_to_file = True)
top1_avg = top1.get_average_results_nouns()
top5_avg = top5.get_average_results_nouns()
avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
avg_score /= 8
print ('Dev average :{:.2f} {} {}'.format( avg_score*100,
utils_imsitu.format_dict(top1_avg,'{:.2f}', '1-'),
utils_imsitu.format_dict(top5_avg, '{:.2f}', '5-')))
#write results to csv file
role_dict = top1.role_dict
fail_val_all = top1.value_all_dict
pass_val_dict = top1.vall_all_correct
with open(args.model_saving_name+'_role_pred_data.json', 'w') as fp:
json.dump(role_dict, fp, indent=4)
with open(args.model_saving_name+'_fail_val_all.json', 'w') as fp:
json.dump(fail_val_all, fp, indent=4)
with open(args.model_saving_name+'_pass_val_all.json', 'w') as fp:
json.dump(pass_val_dict, fp, indent=4)
print('Writing predictions to file completed !')
elif args.test:
top1, top5, val_loss = eval(model, test_loader, encoder, args.gpuid, write_to_file = True)
top1_avg = top1.get_average_results_nouns()
top5_avg = top5.get_average_results_nouns()
avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
avg_score /= 8
print ('Test average :{:.2f} {} {}'.format( avg_score*100,
utils_imsitu.format_dict(top1_avg,'{:.2f}', '1-'),
utils_imsitu.format_dict(top5_avg, '{:.2f}', '5-')))
else:
print('Model training started!')
train(model, train_loader, dev_loader, None, optimizer, scheduler, n_epoch, args.output_dir, encoder, args.gpuid, clip_norm, None, model_name, args.model_saving_name,
args)
if __name__ == "__main__":
main()