-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprevisoes_medias.py
45 lines (32 loc) · 1.07 KB
/
previsoes_medias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 12 19:19:25 2019
@author: Thiag
"""
import pandas as pd
import matplotlib.pylab as plot
base = pd.read_csv('AirPassengers.csv')
dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m')
base = pd.read_csv('AirPassengers.csv',parse_dates=['Month'],
index_col = 'Month', date_parser = dateparse)
ts = base['#Passengers']
plot.plot(ts)
#Previsoes p/ o futuro e extrapolar os dados
ts.mean() #Previsao por media é errado
ts['1960-01-01':'1960-12-01'].mean() #476.1667
#media movel utiliza a media de 12 datas antes do dia que queremos prever
media_movel = ts.rolling(window = 12).mean()
ts[0:12].mean()
ts[1:13].mean()
plot.plot(ts) #serie temporal
plot.plot(media_movel,color='red')
previsoes = []
for i in range(1,13):
superior = len(media_movel) - i
inferior = superior - 11
#print(inferior)
#print(superior)
#print('---')
previsoes.append(media_movel[inferior:superior].mean())
previsoes = previsoes[::-1]
plot.plot(previsoes)