#
- All languages
- Assembly
- Astro
- AutoHotkey
- Batchfile
- C
- C#
- C++
- CMake
- CSS
- Clojure
- CoffeeScript
- D
- Dart
- Dockerfile
- Emacs Lisp
- EmberScript
- GCC Machine Description
- Go
- Groovy
- HCL
- HTML
- Java
- JavaScript
- Jupyter Notebook
- Kotlin
- Lua
- MATLAB
- Makefile
- Markdown
- NSIS
- Objective-C
- Objective-C++
- PHP
- Perl
- PowerShell
- Python
- Rich Text Format
- Roff
- Ruby
- Rust
- SCSS
- Shell
- Smali
- Standard ML
- Swift
- TeX
- TypeScript
- VBScript
- Verilog
- Vim Script
- Vue
Starred repositories
7
stars
written in Jupyter Notebook
Clear filter
A game theoretic approach to explain the output of any machine learning model.
Data and code behind the articles and graphics at FiveThirtyEight
My continuously updated Machine Learning, Probabilistic Models and Deep Learning notes and demos (2000+ slides) 我不间断更新的机器学习,概率模型和深度学习的讲义(2000+页)和视频链接
Image restoration with neural networks but without learning.
Visualizations for machine learning datasets
Updated code for the Learning Data Mining With Python book