-
Notifications
You must be signed in to change notification settings - Fork 48
/
conjugategrad.cpp
428 lines (352 loc) · 13.8 KB
/
conjugategrad.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/******************************************************************************
*
* MantaFlow fluid solver framework
* Copyright 2011 Tobias Pfaff, Nils Thuerey
*
* This program is free software, distributed under the terms of the
* Apache License, Version 2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Conjugate gradient solver, for pressure and viscosity
*
******************************************************************************/
#include "conjugategrad.h"
#include "commonkernels.h"
using namespace std;
namespace Manta {
const int CG_DEBUGLEVEL = 3;
//*****************************************************************************
// Precondition helpers
//! Preconditioning a la Wavelet Turbulence (needs 4 add. grids)
void InitPreconditionIncompCholesky(const FlagGrid& flags,
Grid<Real>& A0, Grid<Real>& Ai, Grid<Real>& Aj, Grid<Real>& Ak,
Grid<Real>& orgA0, Grid<Real>& orgAi, Grid<Real>& orgAj, Grid<Real>& orgAk)
{
// compute IC according to Golub and Van Loan
A0.copyFrom( orgA0 );
Ai.copyFrom( orgAi );
Aj.copyFrom( orgAj );
Ak.copyFrom( orgAk );
FOR_IJK(A0) {
if (flags.isFluid(i,j,k)) {
const IndexInt idx = A0.index(i,j,k);
A0[idx] = sqrt(A0[idx]);
// correct left and top stencil in other entries
// for i = k+1:n
// if (A(i,k) != 0)
// A(i,k) = A(i,k) / A(k,k)
Real invDiagonal = 1.0f / A0[idx];
Ai[idx] *= invDiagonal;
Aj[idx] *= invDiagonal;
Ak[idx] *= invDiagonal;
// correct the right and bottom stencil in other entries
// for j = k+1:n
// for i = j:n
// if (A(i,j) != 0)
// A(i,j) = A(i,j) - A(i,k) * A(j,k)
A0(i+1,j,k) -= square(Ai[idx]);
A0(i,j+1,k) -= square(Aj[idx]);
A0(i,j,k+1) -= square(Ak[idx]);
}
}
// invert A0 for faster computation later
InvertCheckFluid (flags, A0);
};
//! Preconditioning using modified IC ala Bridson (needs 1 add. grid)
void InitPreconditionModifiedIncompCholesky2(const FlagGrid& flags,
Grid<Real>&Aprecond,
Grid<Real>&A0, Grid<Real>& Ai, Grid<Real>& Aj, Grid<Real>& Ak)
{
// compute IC according to Golub and Van Loan
Aprecond.clear();
FOR_IJK(flags) {
if (!flags.isFluid(i,j,k)) continue;
const Real tau = 0.97;
const Real sigma = 0.25;
// compute modified incomplete cholesky
Real e = 0.;
e = A0(i,j,k)
- square(Ai(i-1,j,k) * Aprecond(i-1,j,k) )
- square(Aj(i,j-1,k) * Aprecond(i,j-1,k) )
- square(Ak(i,j,k-1) * Aprecond(i,j,k-1) ) ;
e -= tau * (
Ai(i-1,j,k) * ( Aj(i-1,j,k) + Ak(i-1,j,k) )* square( Aprecond(i-1,j,k) ) +
Aj(i,j-1,k) * ( Ai(i,j-1,k) + Ak(i,j-1,k) )* square( Aprecond(i,j-1,k) ) +
Ak(i,j,k-1) * ( Ai(i,j,k-1) + Aj(i,j,k-1) )* square( Aprecond(i,j,k-1) ) +
0. );
// stability cutoff
if(e < sigma * A0(i,j,k))
e = A0(i,j,k);
Aprecond(i,j,k) = 1. / sqrt( e );
}
};
//! Preconditioning using multigrid ala Dick et al.
void InitPreconditionMultigrid(GridMg* MG, Grid<Real>&A0, Grid<Real>& Ai, Grid<Real>& Aj, Grid<Real>& Ak, Real mAccuracy)
{
// build multigrid hierarchy if necessary
if (!MG->isASet()) MG->setA(&A0, &Ai, &Aj, &Ak);
MG->setCoarsestLevelAccuracy(mAccuracy * 1E-4);
MG->setSmoothing(1,1);
};
//! Apply WT-style ICP
void ApplyPreconditionIncompCholesky(Grid<Real>& dst, Grid<Real>& Var1, const FlagGrid& flags,
Grid<Real>& A0, Grid<Real>& Ai, Grid<Real>& Aj, Grid<Real>& Ak,
Grid<Real>& orgA0, Grid<Real>& orgAi, Grid<Real>& orgAj, Grid<Real>& orgAk)
{
// forward substitution
FOR_IJK(dst) {
if (!flags.isFluid(i,j,k)) continue;
dst(i,j,k) = A0(i,j,k) * (Var1(i,j,k)
- dst(i-1,j,k) * Ai(i-1,j,k)
- dst(i,j-1,k) * Aj(i,j-1,k)
- dst(i,j,k-1) * Ak(i,j,k-1));
}
// backward substitution
FOR_IJK_REVERSE(dst) {
const IndexInt idx = A0.index(i,j,k);
if (!flags.isFluid(idx)) continue;
dst[idx] = A0[idx] * ( dst[idx]
- dst(i+1,j,k) * Ai[idx]
- dst(i,j+1,k) * Aj[idx]
- dst(i,j,k+1) * Ak[idx]);
}
}
//! Apply Bridson-style mICP
void ApplyPreconditionModifiedIncompCholesky2(Grid<Real>& dst, Grid<Real>& Var1, const FlagGrid& flags,
Grid<Real>& Aprecond,
Grid<Real>& A0, Grid<Real>& Ai, Grid<Real>& Aj, Grid<Real>& Ak)
{
// forward substitution
FOR_IJK(dst) {
if (!flags.isFluid(i,j,k)) continue;
const Real p = Aprecond(i,j,k);
dst(i,j,k) = p * (Var1(i,j,k)
- dst(i-1,j,k) * Ai(i-1,j,k) * Aprecond(i-1,j,k)
- dst(i,j-1,k) * Aj(i,j-1,k) * Aprecond(i,j-1,k)
- dst(i,j,k-1) * Ak(i,j,k-1) * Aprecond(i,j,k-1) );
}
// backward substitution
FOR_IJK_REVERSE(dst) {
const IndexInt idx = A0.index(i,j,k);
if (!flags.isFluid(idx)) continue;
const Real p = Aprecond[idx];
dst[idx] = p * ( dst[idx]
- dst(i+1,j,k) * Ai[idx] * p
- dst(i,j+1,k) * Aj[idx] * p
- dst(i,j,k+1) * Ak[idx] * p);
}
}
//! Perform one Multigrid VCycle
void ApplyPreconditionMultigrid(GridMg* pMG, Grid<Real>& dst, Grid<Real>& Var1)
{
// one VCycle on "A*dst = Var1" with initial guess dst=0
pMG->setRhs(Var1);
pMG->doVCycle(dst);
}
//*****************************************************************************
// Kernels
//! Kernel: Compute the dot product between two Real grids
/*! Uses double precision internally */
KERNEL(idx, reduce=+) returns(double result=0.0)
double GridDotProduct (const Grid<Real>& a, const Grid<Real>& b) {
result += (a[idx] * b[idx]);
};
//! Kernel: compute residual (init) and add to sigma
KERNEL(idx, reduce=+) returns(double sigma=0)
double InitSigma (const FlagGrid& flags, Grid<Real>& dst, Grid<Real>& rhs, Grid<Real>& temp)
{
const double res = rhs[idx] - temp[idx];
dst[idx] = (Real)res;
// only compute residual in fluid region
if(flags.isFluid(idx))
sigma += res*res;
};
//! Kernel: update search vector
KERNEL(idx) void UpdateSearchVec (Grid<Real>& dst, Grid<Real>& src, Real factor)
{
dst[idx] = src[idx] + factor * dst[idx];
}
//*****************************************************************************
// CG class
template<class APPLYMAT>
GridCg<APPLYMAT>::GridCg(Grid<Real>& dst, Grid<Real>& rhs, Grid<Real>& residual, Grid<Real>& search, const FlagGrid& flags, Grid<Real>& tmp,
Grid<Real>* pA0, Grid<Real>* pAi, Grid<Real>* pAj, Grid<Real>* pAk) :
GridCgInterface(), mInited(false), mIterations(0), mDst(dst), mRhs(rhs), mResidual(residual),
mSearch(search), mFlags(flags), mTmp(tmp), mpA0(pA0), mpAi(pAi), mpAj(pAj), mpAk(pAk),
mPcMethod(PC_None), mpPCA0(nullptr), mpPCAi(nullptr), mpPCAj(nullptr), mpPCAk(nullptr), mMG(nullptr), mSigma(0.), mAccuracy(VECTOR_EPSILON), mResNorm(1e20)
{ }
template<class APPLYMAT>
void GridCg<APPLYMAT>::doInit() {
mInited = true;
mIterations = 0;
mDst.clear();
mResidual.copyFrom( mRhs ); // p=0, residual = b
if (mPcMethod == PC_ICP) {
assertMsg(mDst.is3D(), "ICP only supports 3D grids so far");
InitPreconditionIncompCholesky(mFlags, *mpPCA0, *mpPCAi, *mpPCAj, *mpPCAk, *mpA0, *mpAi, *mpAj, *mpAk);
ApplyPreconditionIncompCholesky(mTmp, mResidual, mFlags, *mpPCA0, *mpPCAi, *mpPCAj, *mpPCAk, *mpA0, *mpAi, *mpAj, *mpAk);
} else if (mPcMethod == PC_mICP) {
assertMsg(mDst.is3D(), "mICP only supports 3D grids so far");
InitPreconditionModifiedIncompCholesky2(mFlags, *mpPCA0, *mpA0, *mpAi, *mpAj, *mpAk);
ApplyPreconditionModifiedIncompCholesky2(mTmp, mResidual, mFlags, *mpPCA0, *mpA0, *mpAi, *mpAj, *mpAk);
} else if (mPcMethod == PC_MGP) {
InitPreconditionMultigrid(mMG, *mpA0, *mpAi, *mpAj, *mpAk, mAccuracy);
ApplyPreconditionMultigrid(mMG, mTmp, mResidual);
} else {
mTmp.copyFrom( mResidual );
}
mSearch.copyFrom( mTmp );
mSigma = GridDotProduct(mTmp, mResidual);
}
template<class APPLYMAT>
bool GridCg<APPLYMAT>::iterate() {
if(!mInited) doInit();
mIterations++;
// create matrix application operator passed as template argument,
// this could reinterpret the mpA pointers (not so clean right now)
// tmp = applyMat(search)
APPLYMAT (mFlags, mTmp, mSearch, *mpA0, *mpAi, *mpAj, *mpAk);
// alpha = sigma/dot(tmp, search)
Real dp = GridDotProduct(mTmp, mSearch);
Real alpha = 0.;
if(fabs(dp)>0.) alpha = mSigma / (Real)dp;
gridScaledAdd<Real,Real>(mDst, mSearch, alpha); // dst += search * alpha
gridScaledAdd<Real,Real>(mResidual, mTmp, -alpha); // residual += tmp * -alpha
if (mPcMethod == PC_ICP)
ApplyPreconditionIncompCholesky(mTmp, mResidual, mFlags, *mpPCA0, *mpPCAi, *mpPCAj, *mpPCAk, *mpA0, *mpAi, *mpAj, *mpAk);
else if (mPcMethod == PC_mICP)
ApplyPreconditionModifiedIncompCholesky2(mTmp, mResidual, mFlags, *mpPCA0, *mpA0, *mpAi, *mpAj, *mpAk);
else if (mPcMethod == PC_MGP)
ApplyPreconditionMultigrid(mMG, mTmp, mResidual);
else
mTmp.copyFrom( mResidual );
// use the l2 norm of the residual for convergence check? (usually max norm is recommended instead)
if(this->mUseL2Norm) {
mResNorm = GridSumSqr(mResidual).sum;
} else {
mResNorm = mResidual.getMaxAbs();
}
// abort here to safe some work...
if(mResNorm<mAccuracy) {
mSigma = mResNorm; // this will be returned later on to the caller...
return false;
}
Real sigmaNew = GridDotProduct(mTmp, mResidual);
Real beta = sigmaNew / mSigma;
// search = tmp + beta * search
UpdateSearchVec (mSearch, mTmp, beta);
debMsg("GridCg::iterate i="<<mIterations<<" sigmaNew="<<sigmaNew<<" sigmaLast="<<mSigma<<" alpha="<<alpha<<" beta="<<beta<<" ", CG_DEBUGLEVEL);
mSigma = sigmaNew;
if(!(mResNorm<1e35)) {
if(mPcMethod == PC_MGP) {
// diverging solves can be caused by the static multigrid mode, we cannot detect this here, though
// only the pressure solve call "knows" whether the MG is static or dynamics...
debMsg("GridCg::iterate: Warning - this diverging solve can be caused by the 'static' mode of the MG preconditioner. If the static mode is active, try switching to dynamic.", 1);
}
errMsg("GridCg::iterate: The CG solver diverged, residual norm > 1e30, stopping.");
}
//debMsg("PB-CG-Norms::p"<<sqrt( GridOpNormNosqrt(mpDst, mpFlags).getValue() ) <<" search"<<sqrt( GridOpNormNosqrt(mpSearch, mpFlags).getValue(), CG_DEBUGLEVEL ) <<" res"<<sqrt( GridOpNormNosqrt(mpResidual, mpFlags).getValue() ) <<" tmp"<<sqrt( GridOpNormNosqrt(mpTmp, mpFlags).getValue() ), CG_DEBUGLEVEL ); // debug
return true;
}
template<class APPLYMAT>
void GridCg<APPLYMAT>::solve(int maxIter) {
for (int iter=0; iter<maxIter; iter++) {
if (!iterate()) iter=maxIter;
}
return;
}
static bool gPrint2dWarning = true;
template<class APPLYMAT>
void GridCg<APPLYMAT>::setICPreconditioner(PreconditionType method, Grid<Real> *A0, Grid<Real> *Ai, Grid<Real> *Aj, Grid<Real> *Ak) {
assertMsg(method==PC_ICP || method==PC_mICP, "GridCg<APPLYMAT>::setICPreconditioner: Invalid method specified.");
mPcMethod = method;
if( (!A0->is3D())) {
if(gPrint2dWarning) {
debMsg("ICP/mICP pre-conditioning only supported in 3D for now, disabling it.", 1);
gPrint2dWarning = false;
}
mPcMethod=PC_None;
}
mpPCA0 = A0;
mpPCAi = Ai;
mpPCAj = Aj;
mpPCAk = Ak;
}
template<class APPLYMAT>
void GridCg<APPLYMAT>::setMGPreconditioner(PreconditionType method, GridMg* MG) {
assertMsg(method==PC_MGP, "GridCg<APPLYMAT>::setMGPreconditioner: Invalid method specified.");
mPcMethod = method;
mMG = MG;
}
// explicit instantiation
template class GridCg<ApplyMatrix>;
template class GridCg<ApplyMatrix2D>;
//*****************************************************************************
// diffusion for real and vec grids, e.g. for viscosity
//! do a CG solve for diffusion; note: diffusion coefficient alpha given in grid space,
// rescale in python file for discretization independence (or physical correspondence)
// see lidDrivenCavity.py for an example
PYTHON() void cgSolveDiffusion(const FlagGrid& flags, GridBase& grid,
Real alpha = 0.25, Real cgMaxIterFac = 1.0, Real cgAccuracy = 1e-4 )
{
// reserve temp grids
FluidSolver* parent = flags.getParent();
Grid<Real> rhs(parent);
Grid<Real> residual(parent), search(parent), tmp(parent);
Grid<Real> A0(parent), Ai(parent), Aj(parent), Ak(parent);
// setup matrix and boundaries
FlagGrid flagsDummy(parent);
flagsDummy.setConst(FlagGrid::TypeFluid);
MakeLaplaceMatrix (flagsDummy, A0, Ai, Aj, Ak);
FOR_IJK(flags) {
if(flags.isObstacle(i,j,k)) {
Ai(i,j,k) = Aj(i,j,k) = Ak(i,j,k) = 0.0;
A0(i,j,k) = 1.0;
} else {
Ai(i,j,k) *= alpha;
Aj(i,j,k) *= alpha;
Ak(i,j,k) *= alpha;
A0(i,j,k) *= alpha;
A0(i,j,k) += 1.;
}
}
GridCgInterface *gcg;
// note , no preconditioning for now...
const int maxIter = (int)(cgMaxIterFac * flags.getSize().max()) * (flags.is3D() ? 1 : 4);
if (grid.getType() & GridBase::TypeReal) {
Grid<Real>& u = ((Grid<Real>&) grid);
rhs.copyFrom(u);
if (flags.is3D())
gcg = new GridCg<ApplyMatrix >(u, rhs, residual, search, flags, tmp, &A0, &Ai, &Aj, &Ak );
else
gcg = new GridCg<ApplyMatrix2D>(u, rhs, residual, search, flags, tmp, &A0, &Ai, &Aj, &Ak );
gcg->setAccuracy( cgAccuracy );
gcg->solve(maxIter);
debMsg("FluidSolver::solveDiffusion iterations:"<<gcg->getIterations()<<", res:"<<gcg->getSigma(), CG_DEBUGLEVEL);
}
else
if( (grid.getType() & GridBase::TypeVec3) || (grid.getType() & GridBase::TypeMAC) )
{
Grid<Vec3>& vec = ((Grid<Vec3>&) grid);
Grid<Real> u(parent);
// core solve is same as for a regular real grid
if (flags.is3D())
gcg = new GridCg<ApplyMatrix >(u, rhs, residual, search, flags, tmp, &A0, &Ai, &Aj, &Ak );
else
gcg = new GridCg<ApplyMatrix2D>(u, rhs, residual, search, flags, tmp, &A0, &Ai, &Aj, &Ak );
gcg->setAccuracy( cgAccuracy );
// diffuse every component separately
for(int component = 0; component< (grid.is3D() ? 3:2); ++component) {
getComponent( vec, u, component );
gcg->forceReinit();
rhs.copyFrom(u);
gcg->solve(maxIter);
debMsg("FluidSolver::solveDiffusion vec3, iterations:"<<gcg->getIterations()<<", res:"<<gcg->getSigma(), CG_DEBUGLEVEL);
setComponent( u, vec, component );
}
} else {
errMsg("cgSolveDiffusion: Grid Type is not supported (only Real, Vec3, MAC, or Levelset)");
}
delete gcg;
}
}; // DDF