forked from www-bioinfo-org/CNCI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compare.py
310 lines (268 loc) · 12.7 KB
/
compare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#-------------------------------------------------------------------------------
# Name: ??1
# Purpose:
#
# Author: user
#
# Created: 29/01/2014
# Copyright: (c) user 2014
# Licence: <your licence>
#-------------------------------------------------------------------------------
from optparse import OptionParser
from Gtf import Gtf
from Table import Table
from sets import Set
import subprocess
import shlex
import os
import time
def sub_array(A,B):
x=Set(A)
y=Set(B)
return list(x - y)
def intersect_array(A,B):
x=Set(A)
y=Set(B)
return list(x & y)
def union_array(A,B):
x=Set(A)
y=Set(B)
return list(x | y)
def de_redundency(A):
return list(Set(A))
def fetch_args():
usage="""
compare.py: compare the merged/assembled transcripts with known gene annotation!
Usage: compare.py [-h] -c coding_ref -n noncoding_ref -i input_gtf -o out_dir
"""
parser = OptionParser(usage=usage)
parser.add_option("-c", "--coding_ref", dest="coding_ref", help="(Required.) "
+"The path of coding reference gtf file. Two mandatory attributes"
+" (gene_id \"value\"; transcript_id \"value\") should be provided in the file. "
+"Some files which has already been prepared could be download at"
+" http://wwww.bioinfo.org/software/cnci .")
parser.add_option("-n", "--noncoding_ref", dest="noncoding_ref", help="(Required.) "
+"The path of lincRNA reference gtf file. Two mandatory attributes"
+" (gene_id \"value\"; transcript_id \"value\") should be provided in the file. "
+"Some files which has already been prepared could be download at"
+" http://wwww.bioinfo.org/software/cnci .")
parser.add_option("-i", "--input_gtf", dest="input_gtf", help="(Required.) "
+"The path of user input assemble gtf file. Two mandatory attributes"
+" (gene_id \"value\"; transcript_id \"value\") should be provided in the file. "
+"This file usually be generated by cufflinks/cuffcompare/cuffmerge.")
parser.add_option("-o", "--out_dir", dest="out_dir", help="(Required.) Output dirctory of the results.")
(options, args) = parser.parse_args()
if options.coding_ref is not None:
coding_ref=options.coding_ref
else:
print parser.print_help()
exit("Error: Coding reference file is required!")
if options.noncoding_ref is not None:
noncoding_ref=options.noncoding_ref
else:
print parser.print_help()
exit("Error: Noncoding reference file is required!")
if options.input_gtf is not None:
input_gtf=options.input_gtf
else:
print parser.print_help()
exit("Error: User input assembly file is required!")
if options.out_dir is not None:
out_dir=options.out_dir
out_dir=out_dir.rstrip('/')
else:
print parser.print_help()
exit("Error: Output directory is required!")
return (coding_ref,noncoding_ref,out_dir,input_gtf)
def make_dir(filepath):
if not os.path.exists(filepath):
os.makedirs(filepath)
def prepare_dirs(out_dir):
if out_dir:
make_dir(out_dir)
cuffcompare_outdir=out_dir+ '/cuffcompare'
gtf_outdir=out_dir+'/gtf'
else:
cuffcompare_outdir='cuffcompare'
gtf_outdir='gtf'
out_dir="."
make_dir(cuffcompare_outdir)
#make_dir(gtf_outdir)
return (cuffcompare_outdir,gtf_outdir)
def erase_strand(input_gtf,new_file):
result=Table(input_gtf,0,False)
result.update_col(7,'+')
result.write_to_file(new_file)
def fetch_gtfs(coding_ref_input,noncoding_ref_input,combined_gtf_input,cuffcompare_outdir):
coding_ref=cuffcompare_outdir+"/coding.gtf"
noncoding_ref=cuffcompare_outdir+"/noncoding.gtf"
combined_gtf=cuffcompare_outdir+"/combined.gtf"
erase_strand(coding_ref_input,coding_ref)
erase_strand(noncoding_ref_input,noncoding_ref)
erase_strand(combined_gtf_input,combined_gtf)
return (coding_ref,noncoding_ref,combined_gtf)
def cuffcompare(db,query,out_pre):
query_dir=os.path.split(query)[0]
query_dir=(query_dir=="" and "./") or query_dir
query_filename=os.path.split(query)[1]
out_pre_tag=os.path.split(out_pre)[1]
cuffcompare_cmd='cuffcompare -r ' + db +' -o '+ out_pre + ' ' + query
cuffcompare_cmd=shlex.split(cuffcompare_cmd)
stdoutfile=out_pre + '.log'
stderrfile=out_pre + '.err'
cuffcompare_proc = subprocess.call(cuffcompare_cmd,stdout=open(stdoutfile,'w'),stderr=open(stderrfile,'w'))
if cuffcompare_proc:
print("Error: Cuffcompare break!, The command: "+" ".jon(cuffcompare_cmd))
exit("See std_log: "+stdoutfile+", err_log: "+stderrfile+" for more detail")
query_dir=query_dir.rstrip('/')
tmap_file=query_dir+"/"+out_pre_tag+"."+query_filename+".tmap"
return Table(tmap_file,0,True)
def classify(KC,overlap_KC,KN,overlap_KN,discard_cnc_tmap_gids,unannotated):
result=Table()
result.key=1
result.col_names=['gid','class']
for i in KC:
result.data.append([i,'known_coding'])
result.row_names[i]=len(result.row_names)
for i in overlap_KC:
result.data.append([i,'undefinable'])
result.row_names[i]=len(result.row_names)
for i in KN:
result.data.append([i,'known_lincRNA'])
result.row_names[i]=len(result.row_names)
for i in overlap_KN:
result.data.append([i,'undefinable'])
result.row_names[i]=len(result.row_names)
# for i in discard_cnc_tmap_gids:
# result.data.append([i,'discarded'])
# result.row_names[i]=len(result.row_names)
for i in unannotated:
result.data.append([i,'potentially_novel'])
result.row_names[i]=len(result.row_names)
return result
def related_gene(related_gene):
gene_class=related_gene[1]
coding=related_gene[2]
noncoding=related_gene[3]
overlap_coding=related_gene[4]
overlap_noncoding=related_gene[5]
if gene_class =="known_coding":
return coding
elif gene_class == "known_lincRNA":
return noncoding
elif gene_class == "undefinable":
if overlap_coding!= "":
return overlap_coding
elif overlap_noncoding!="":
return overlap_noncoding
else:
return "-"
else:
return "-"
(coding_ref_input,noncoding_ref_input,out_dir,combined_gtf_input)=fetch_args()
start_time=time.time()
print "Classification start:"
(cuffcompare_outdir,gtf_outdir)=prepare_dirs(out_dir)
(coding_ref,noncoding_ref,combined_gtf)=fetch_gtfs(
coding_ref_input, noncoding_ref_input,
combined_gtf_input, cuffcompare_outdir)
gtf=Gtf.simple_read(combined_gtf_input)
tid_gid=gtf.get_tid_gid()
gid_tid=tid_gid.key_by([2],[1])
all_gids=gid_tid.getCol(1)
print "Input genes: ", len(all_gids)
print "Running Cuffcompare ..."
strand_coding_tmap=cuffcompare(coding_ref_input,combined_gtf_input,cuffcompare_outdir+'/strandc')
strand_coding_tmap.update_col('cuff_gene_id',gtf.get_gid(strand_coding_tmap.getCol('cuff_id')))
strand_noncoding_tmap=cuffcompare(noncoding_ref_input,combined_gtf_input,cuffcompare_outdir+'/strandnc')
strand_noncoding_tmap.update_col('cuff_gene_id',gtf.get_gid(strand_noncoding_tmap.getCol('cuff_id')))
coding_tmap=cuffcompare(coding_ref,combined_gtf,cuffcompare_outdir+'/coding')
coding_tmap.update_col('cuff_gene_id',gtf.get_gid(coding_tmap.getCol('cuff_id')))
noncoding_tmap=cuffcompare(noncoding_ref,combined_gtf,cuffcompare_outdir+'/noncoding')
noncoding_tmap.update_col('cuff_gene_id',gtf.get_gid(noncoding_tmap.getCol('cuff_id')))
print "Classifying based on Cuffcompare results:"
known_coding=strand_coding_tmap.eget('union','_class_code==','_class_code=c','_class_code=j')
known_coding=known_coding.get_col(1,4).de_redundency().key_by([2],[1])
overlap_coding=coding_tmap.eget('union','_class_code=e','_class_code=o','_class_code=p',
'_class_code=r','_class_code=x','_class_code=s','_class_code=.')
overlap_coding=overlap_coding.get_col(1,4).de_redundency().key_by([2],[1])
known_noncoding=strand_noncoding_tmap.eget('union','_class_code==','_class_code=c','_class_code=j')
known_noncoding=known_noncoding.get_col(1,4).de_redundency().key_by([2],[1])
overlap_noncoding=noncoding_tmap.eget('union','_class_code=e','_class_code=o','_class_code=p',
'_class_code=r','_class_code=x','_class_code=s','_class_code=.')
overlap_noncoding=overlap_noncoding.get_col(1,4).de_redundency().key_by([2],[1])
coding_linc=coding_tmap.eget('union','_class_code=u','_class_code=i')
coding_linc=coding_linc.get_col(1,4).de_redundency().key_by([2],[1])
noncoding_linc=noncoding_tmap.eget('union','_class_code=u','_class_code=i')
noncoding_linc=noncoding_linc.get_col(1,4).de_redundency().key_by([2],[1])
coding_tmap_gids=de_redundency(coding_tmap.getCol('cuff_gene_id'))
noncoding_tmap_gids=de_redundency(noncoding_tmap.getCol('cuff_gene_id'))
discard_coding_tmap_gids=sub_array(all_gids,coding_tmap_gids)
discard_noncoding_tmap_gids=sub_array(all_gids,noncoding_tmap_gids)
discard_cnc_tmap_gids=intersect_array(discard_coding_tmap_gids,discard_noncoding_tmap_gids)
KC=known_coding.getCol(1)
print "Known coding genes:",len(KC)
not_KC=sub_array(all_gids,KC)
overlap_KC=intersect_array(not_KC,overlap_coding.getCol(1))
#print "overlap coding:",len(overlap_KC)
linc_KC=sub_array(not_KC,overlap_KC)
KN=intersect_array(known_noncoding.getCol(1),linc_KC)
print "Known lincRNA genes:",len(KN)
not_KN=sub_array(linc_KC,KN)
overlap_KN=intersect_array(not_KN,overlap_noncoding.getCol(1))
#print "overlap lincRNA:",len(overlap_KN)
#print "discarded:",len(discard_cnc_tmap_gids)
undefinable=union_array(overlap_KC,overlap_KN)
print "Undefinable genes:", len(undefinable)
unannotated=sub_array(not_KN,overlap_KN)
unannotated=sub_array(unannotated,discard_cnc_tmap_gids)
print "Potentially novel genes:",len(unannotated)
print "Genes missing classification by cuffcompare:", len(discard_cnc_tmap_gids)
print "Saving gtf files ..."
gene_class_outfile=out_dir+"/compare_1_infor.txt"
kc_gtf=out_dir+"/known_coding.gtf"
#overlap_kc_gtf=out_dir+"/overlap_coding.gtf"
kn_gtf=out_dir+"/known_lincRNA.gtf"
#overlap_kn_gtf=out_dir+"/overlap_lincRNA.gtf"
#discard_cnc_tmap_gids_gtf=out_dir+"/discarded.gtf"
undefinable_gtf=out_dir+"/undefinable.gtf"
unannotated_gtf=out_dir+"/potentially_novel.gtf"
#kc_go_outfile=out_dir+"/known_coding_gene_annotation"
#t2g_file=out_dir+"/tid_gid"
gene_class=classify(KC,overlap_KC,KN,overlap_KN,discard_cnc_tmap_gids,unannotated)
all_info=Table.paste(gene_class,[1],known_coding,[1],known_noncoding,[1],overlap_coding,[1],overlap_noncoding,[1])
all_info.col_names[2]='related_coding_gene'
all_info.col_names[3]='related_linc_gene'
all_info.col_names[4]='overlap_coding_gene'
all_info.col_names[5]='overlap_noncoding_gene'
all_info.append_col_by_func('related_ref_genes',related_gene)
all_info=all_info.get_col(1,2,'related_ref_genes')
all_info.set_colnames('input_gene_id','class','ref_gene_info')
#print "Class of genes is saved to '" +gene_class_outfile+"'"
all_info.write_to_file(gene_class_outfile)
#tid_gid.write_to_file(t2g_file)
#print "Generating known coding genes file:"
gtf.sub_gtf(gtf.get_tid(KC)).write_to_file(kc_gtf)
#print "Generating overlap coding genes file:"
#gtf.sub_gtf(gtf.get_tid(overlap_KC)).write_to_file(overlap_kc_gtf)
#print "Generating known lincRNA genes file:"
gtf.sub_gtf(gtf.get_tid(KN)).write_to_file(kn_gtf)
#print "Generating overlap lincRNA genes file:"
#gtf.sub_gtf(gtf.get_tid(overlap_KN)).write_to_file(overlap_kn_gtf)
#print "Generating discarded genes file:"
#gtf.sub_gtf(gtf.get_tid(discard_cnc_tmap_gids)).write_to_file(discard_cnc_tmap_gids_gtf)
#print "Generating undefinable genes file:"
gtf.sub_gtf(gtf.get_tid(undefinable)).write_to_file(undefinable_gtf)
#print "Generating potentially_novel genes file:"
gtf.sub_gtf(gtf.get_tid(unannotated)).write_to_file(unannotated_gtf)
##if gene_anno:
## known_coding_disabond=known_coding.disabond_col(2,",")
## kc_go=Table.fuzzy_paste(known_coding_disabond,[2],Table(gene_anno,0,False),[1])
## kc_go=kc_go.eget('intersect','2!=','3!=')
## kc_go=kc_go.get_col(2,3,1)
## kc_go=kc_go.disabond_col(1,',')
## kc_go=kc_go.disabond_col(2,',')
## kc_go=kc_go.de_redundency(1,2)
## kc_go.write_to_file(kc_go_outfile)
run_time=int((time.time() - start_time)/60)
exit("Classificaton complete: "+"%d minutes elapsed " % run_time)