forked from aqlaboratory/openfold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_primitives.py
53 lines (41 loc) · 1.56 KB
/
test_primitives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
import unittest
from openfold.model.primitives import (
Attention,
)
from tests.config import consts
class TestLMA(unittest.TestCase):
def test_lma_vs_attention(self):
batch_size = consts.batch_size
c_hidden = 32
n = 2**12
no_heads = 4
q = torch.rand(batch_size, n, c_hidden).cuda()
kv = torch.rand(batch_size, n, c_hidden).cuda()
bias = [torch.rand(no_heads, 1, n)]
bias = [b.cuda() for b in bias]
gating_fill = torch.rand(c_hidden * no_heads, c_hidden)
o_fill = torch.rand(c_hidden, c_hidden * no_heads)
a = Attention(
c_hidden, c_hidden, c_hidden, c_hidden, no_heads
).cuda()
with torch.no_grad():
l = a(q, kv, biases=bias, use_lma=True)
real = a(q, kv, biases=bias)
self.assertTrue(torch.max(torch.abs(l - real)) < consts.eps)
if __name__ == "__main__":
unittest.main()