forked from AdaptiveMotorControlLab/CEBRA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.cfg
104 lines (101 loc) · 2.3 KB
/
setup.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
[metadata]
name = cebra
version = attr: cebra.__version__
author = Steffen Schneider, Jin H Lee, Mackenzie W Mathis
author_email = [email protected]
description = Consistent Embeddings of high-dimensional Recordings using Auxiliary variables
long_description = file: README.md
long_description_content_type = text/markdown
license_files = LICENSE.md
license_file_type = text/markdown
url = https://github.com/AdaptiveMotorControlLab/CEBRA
project_urls =
Bug Tracker = https://github.com/AdaptiveMotorControlLab/CEBRA/issues
classifiers =
Development Status :: 3 - Alpha
Environment :: GPU :: NVIDIA CUDA
Intended Audience :: Science/Research
Operating System :: OS Independent
Programming Language :: Python :: 3
Topic :: Scientific/Engineering :: Artificial Intelligence
License :: Free for non-commercial use
[options]
packages = find:
where =
- .
- tests
python_requires = >=3.8
install_requires =
joblib
literate-dataclasses
scikit-learn
scipy
torch
tqdm
matplotlib
requests
[options.extras_require]
datasets =
# cebra.datasets.allen
h5py
pandas
nlb_tools
# additional data loading dependencies
hdf5storage # for creating .mat files in new format
openpyxl # for excel file format loading
integrations =
jupyter
pandas
plotly
docs =
sphinx==5.3
sphinx-gallery==0.10.1
docutils
pydata-sphinx-theme==0.9.0
sphinx_autodoc_typehints==1.19
sphinx_copybutton
sphinx_tabs
sphinx_design
sphinx_togglebutton
nbsphinx
nbconvert
ipykernel
matplotlib<=3.5.2
pandas
seaborn
scikit-learn<1.3
demos =
ipykernel
jupyter
nbconvert
seaborn
# TODO(stes): Additional dependency for running
# co-homology analysis
# is ripser, which can be tricky to
# install on some systems.
# Please follow these instructions
# directly:
# https://pypi.org/project/ripser/
dev =
pylint
toml
yapf
black
isort
toml
coverage
pytest
pytest-benchmark
pytest-xdist
pytest-timeout
pytest-sphinx
tables<=3.8
licenseheaders
# TODO(stes) Add back once upstream issue
# https://github.com/PyCQA/docformatter/issues/119
# is resolved.
# docformatter[tomli]
codespell
cffconvert
[bdist_wheel]
universal=1