-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_vit_gpt.py
236 lines (188 loc) · 8.05 KB
/
test_vit_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
from tqdm import tqdm
from models.vit_gpt import GPT2Model, GPT2LMHeadModel
import torch
from data.coco_dataset import COCOCLIPDataset, COCOCLIPDatasetITuning
from utils.task_utils import update_config
from omegaconf import OmegaConf
import argparse
import json
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist
from torch.utils.data import DataLoader
import torch.nn.functional as F
from transformers import ViTModel, AutoImageProcessor, GPT2Tokenizer, AdamW, get_linear_schedule_with_warmup, GPT2Config
from collections import OrderedDict
import random
import numpy as np
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
if v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-s",
"--seed",
type=int,
default=684331,
help="seed for seed_everything",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list()
)
parser.add_argument(
"-w",
"--num_workers",
type=int,
default=16,
help="num of workers for data loader"
)
parser.add_argument(
"--train_batch_size",
type=int,
default=None,
help="batch size for training"
)
parser.add_argument(
"--val_batch_size",
type=int,
default=None,
help="batch size for validataion and test"
)
## args for inference -- sentence generation
parser.add_argument(
"--use_beam_search",
action="store_true"
)
parser.add_argument(
"--beam_size",
type=int,
default=5
)
parser.add_argument(
"--gpt_type",
type=str,
default="gpt2"
)
parser.add_argument(
"--vit_type",
type=str,
default="google/vit-base-patch16-224"
)
parser.add_argument(
"--out_dir",
type=str,
default="."
)
parser.add_argument(
"--epoch",
type=int,
default=100,
)
parser.add_argument("--model_name", type=str, default="vit_gpt_routing_best_val")
parser.add_argument("--no_vis_prefix", action="store_true")
parser.add_argument("--text_prefix", type=str, default="<s>")
parser.add_argument("--multiply_ones", action="store_true")
parser.add_argument("--vit_use_pooler", action="store_true")
parser.add_argument("--add_relu", action="store_true")
return parser
def test_epoch(test_dataloader, tokenizer, lm_model, vis_model, device, multiply_ones):
lm_model = lm_model.module.module
lm_model.eval()
output_dict = {"pred_sent":[]}
for idx, batch in enumerate(tqdm(test_dataloader, desc="Iteration")):
tokens, mask, img = batch["encoder_input_ids"], batch["encoder_padding_mask"], batch["context_inputs"]
tokens = tokens.to(device)
img = img.to(device)
mask = mask.to(device)
if opt.vit_use_pooler:
img_feat = vis_model(img)["pooler_output"]
img_feat = img_feat.unsqueeze(1)
else:
img_feat = vis_model(img)["last_hidden_state"]
if opt.no_vis_prefix:
text_prefix = [opt.text_prefix] * len(img)
input_ids = tokenizer.batch_encode_plus(text_prefix, return_tensors="pt")["input_ids"]
input_ids = input_ids.to(device)
if "ituning" in opt.model_name:
outputs = lm_model.generate(input_ids=input_ids, vision_hidden_states=img_feat, num_beams=5)
else:
outputs = lm_model.generate(input_ids=input_ids, vision_hidden_states=img_feat, num_beams=5, multiply_ones=multiply_ones)
else:
if "ituning" in opt.model_name:
outputs = lm_model.generate(inputs_embeds=img_feat, vision_hidden_states=img_feat, num_beams=5)
else:
outputs = lm_model.gpt.generate(inputs_embeds=img_feat, vision_hidden_states=img_feat, num_beams=5, multiply_ones=multiply_ones)
gen_text = tokenizer.batch_decode(outputs)
gen_text = [cap.replace("<|endoftext|>", "") for cap in gen_text]
gen_text = [cap.replace("\n", "") for cap in gen_text]
if opt.no_vis_prefix:
gen_text = [cap.replace("<s>", "") for cap in gen_text]
for i in range(len(gen_text)):
output_dict["pred_sent"].extend([{
"image_id": batch["image_id"][i].item(),
"id": batch["sample_id"][i].item(),
"caption": gen_text[i]
}])
return output_dict
def set_random_seed(seed: int):
"""
Helper function to seed experiment for reproducibility.
If -1 is provided as seed, experiment uses random seed from 0~9999
Args:
seed (int): integer to be used as seed, use -1 to randomly seed experiment
"""
print("Seed: {}".format(seed))
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if __name__ == "__main__":
parser = get_parser()
opt, unknown = parser.parse_known_args()
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
_config = update_config(opt=opt, config=config, ignore_args=[])
set_random_seed(int(opt.seed))
local_rank = int(os.environ['LOCAL_RANK'])
torch.distributed.init_process_group(backend="nccl")
torch.distributed.barrier()
os.environ["TORCH_DISTRIBUTED_DEBUG"] = "INFO"
DEVICE = torch.device("cuda", local_rank)
# lm_model = GPT2LMHeadModel.from_pretrained(_config.model.params.gpt_type, lora_config=_config.lora.params)
tokenizer = GPT2Tokenizer.from_pretrained(_config.model.params.gpt_type)
vis_model = ViTModel.from_pretrained(_config.model.params.vit_type)
img_processor = AutoImageProcessor.from_pretrained(_config.model.params.vit_type)
test_config = _config.task.test_data_config.params
if opt.no_vis_prefix:
test_data = COCOCLIPDatasetITuning(test_config.split, tokenizer, test_config.data_root, test_config.version, test_config.max_len, prefix_length=test_config.prefix_length, img_version = None, img_split = test_config.img_split, transform=img_processor)
else:
test_data = COCOCLIPDataset(test_config.split, tokenizer, test_config.data_root, test_config.version, test_config.max_len, prefix_length=test_config.prefix_length, img_version = None, img_split = test_config.img_split, transform=img_processor)
test_loader = DataLoader(test_data, opt.val_batch_size, num_workers=opt.num_workers, collate_fn=test_data.collate)
# lm_config = GPT2Config.from_pretrained(_config.model.params.gpt_type)
# lm_model = GPT2LMHeadModel(lm_config, lora_config=_config.lora.params)
# lm_state_dict = torch.load(os.path.join(opt.out_dir, opt.model_name+".pt"), map_location="cpu")
# lm_state_dict = OrderedDict((k.replace("module.", "") if k.startswith("module") else k, v) for k, v in lm_state_dict.items())
# lm_model.load_state_dict(lm_state_dict)
lm_model = torch.load(os.path.join(opt.out_dir, opt.model_name+".pt"), map_location="cpu")
lm_model = lm_model.to(DEVICE)
lm_model = torch.nn.parallel.DistributedDataParallel(lm_model, device_ids=[local_rank], output_device=[local_rank])
vis_model = vis_model.to(DEVICE)
output_dict = test_epoch(test_loader, tokenizer, lm_model, vis_model, DEVICE, opt.multiply_ones)
with open(os.path.join(opt.out_dir, opt.model_name+".json"), "w") as f:
json.dump(output_dict, f)