-
Notifications
You must be signed in to change notification settings - Fork 24
/
ExtractFeature.py
832 lines (671 loc) · 31.2 KB
/
ExtractFeature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
# This script is only used for testing on individual images.
# For actual extraction, we use extract.py, called by feature_routine.py
#
#
import cv2
import numpy as np
import math
# from matplotlib import pyplot as plt
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.simplefilter('ignore')
# please don't worry about these two variables now
ANCHOR_POINT = 6000
MIDZONE_THRESHOLD = 15000
# Features are defined here as global variables
BASELINE_ANGLE = 0.0
TOP_MARGIN = 0.0
LETTER_SIZE = 0.0
LINE_SPACING = 0.0
WORD_SPACING = 0.0
PEN_PRESSURE = 0.0
SLANT_ANGLE = 0.0
''' function for bilateral filtering '''
def bilateralFilter(image, d):
image = cv2.bilateralFilter(image, d, 50, 50)
return image
''' function for median filtering '''
def medianFilter(image, d):
image = cv2.medianBlur(image, d)
return image
''' function for INVERTED binary threshold '''
def threshold(image, t):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret, image = cv2.threshold(image, t, 255, cv2.THRESH_BINARY_INV)
return image
''' function for dilation of objects in the image '''
def dilate(image, kernalSize):
kernel = np.ones(kernalSize, np.uint8)
image = cv2.dilate(image, kernel, iterations=1)
return image
''' function for erosion of objects in the image '''
def erode(image, kernalSize):
kernel = np.ones(kernalSize, np.uint8)
image = cv2.erode(image, kernel, iterations=1)
return image
''' function for finding countours and straightening them horizontally. Straightened lines will give better result with horizontal projections. '''
def straighten(image):
global BASELINE_ANGLE
angle = 0.0
angle_sum = 0.0
countour_count = 0
# these four variables are not being used, please ignore
positive_angle_sum = 0.0 # downward
negative_angle_sum = 0.0 # upward
positive_count = 0
negative_count = 0
# apply bilateral filter
filtered = bilateralFilter(image, 3)
cv2.imshow('filtered', filtered)
# convert to grayscale and binarize the image by INVERTED binary thresholding
thresh = threshold(filtered, 120)
cv2.imshow('thresh', thresh)
# dilate the handwritten lines in image with a suitable kernel for contour operation
dilated = dilate(thresh, (5, 100))
cv2.imshow('dilated', dilated)
im2, ctrs, hier = cv2.findContours(
dilated.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for i, ctr in enumerate(ctrs):
x, y, w, h = cv2.boundingRect(ctr)
# We can be sure the contour is not a line if height > width or height is < 20 pixels. Here 20 is arbitrary.
if h > w or h < 20:
continue
# We extract the region of interest/contour to be straightened.
roi = image[y:y+h, x:x+w]
# rows, cols = ctr.shape[:2]
# If the length of the line is less than half the document width, especially for the last line,
# ignore because it may yeild inacurate baseline angle which subsequently affects proceeding features.
if w < image.shape[1]/2:
roi = 255
image[y:y+h, x:x+w] = roi
continue
# minAreaRect is necessary for straightening
rect = cv2.minAreaRect(ctr)
center = rect[0]
angle = rect[2]
# print "original: "+str(i)+" "+str(angle)
# I actually gave a thought to this but hard to remember anyway!
if angle < -45.0:
angle += 90.0
# print "+90 "+str(i)+" "+str(angle)
rot = cv2.getRotationMatrix2D(((x+w)/2, (y+h)/2), angle, 1)
# extract = cv2.warpAffine(roi, rot, (w,h), borderMode=cv2.BORDER_TRANSPARENT)
extract = cv2.warpAffine(
roi, rot, (w, h), borderMode=cv2.BORDER_CONSTANT, borderValue=(255, 255, 255))
# cv2.imshow('warpAffine:'+str(i),extract)
# image is overwritten with the straightened contour
image[y:y+h, x:x+w] = extract
'''
# Please Ignore. This is to draw visual representation of the contour rotation.
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(display,[box],0,(0,0,255),1)
cv2.rectangle(display,(x,y),( x + w, y + h ),(0,255,0),1)
'''
print angle
angle_sum += angle
countour_count += 1
'''
# sum of all the angles of downward baseline
if(angle>0.0):
positive_angle_sum += angle
positive_count += 1
# sum of all the angles of upward baseline
else:
negative_angle_sum += angle
negative_count += 1
if(positive_count == 0): positive_count = 1
if(negative_count == 0): negative_count = 1
average_positive_angle = positive_angle_sum / positive_count
average_negative_angle = negative_angle_sum / negative_count
print "average_positive_angle: "+str(average_positive_angle)
print "average_negative_angle: "+str(average_negative_angle)
if(abs(average_positive_angle) > abs(average_negative_angle)):
average_angle = average_positive_angle
else:
average_angle = average_negative_angle
print "average_angle: "+str(average_angle)
'''
# cv2.imshow('countours', display)
# mean angle of the contours (not lines) is found
mean_angle = angle_sum / countour_count
BASELINE_ANGLE = mean_angle
print "Average baseline angle: "+str(mean_angle)
return image
''' function to calculate horizontal projection of the image pixel rows and return it '''
def horizontalProjection(img):
# Return a list containing the sum of the pixels in each row
(h, w) = img.shape[:2]
sumRows = []
for j in range(h):
row = img[j:j+1, 0:w] # y1:y2, x1:x2
sumRows.append(np.sum(row))
return sumRows
''' function to calculate vertical projection of the image pixel columns and return it '''
def verticalProjection(img):
# Return a list containing the sum of the pixels in each column
(h, w) = img.shape[:2]
sumCols = []
for j in range(w):
col = img[0:h, j:j+1] # y1:y2, x1:x2
sumCols.append(np.sum(col))
return sumCols
''' function to extract lines of handwritten text from the image using horizontal projection '''
def extractLines(img):
global LETTER_SIZE
global LINE_SPACING
global TOP_MARGIN
# apply bilateral filter
filtered = bilateralFilter(img, 5)
# convert to grayscale and binarize the image by INVERTED binary thresholding
# it's better to clear unwanted dark areas at the document left edge and use a high threshold value to preserve more text pixels
thresh = threshold(filtered, 160)
# cv2.imshow('thresh', lthresh)
# extract a python list containing values of the horizontal projection of the image into 'hp'
hpList = horizontalProjection(thresh)
# Extracting 'Top Margin' feature.
topMarginCount = 0
for sum in hpList:
# sum can be strictly 0 as well. Anyway we take 0 and 255.
if (sum <= 255):
topMarginCount += 1
else:
break
# print "(Top margin row count: "+str(topMarginCount)+")"
# FIRST we extract the straightened contours from the image by looking at occurance of 0's in the horizontal projection.
lineTop = 0
lineBottom = 0
spaceTop = 0
spaceBottom = 0
indexCount = 0
setLineTop = True
setSpaceTop = True
includeNextSpace = True
space_zero = [] # stores the amount of space between lines
lines = [] # a 2D list storing the vertical start index and end index of each contour
# we are scanning the whole horizontal projection now
for i, sum in enumerate(hpList):
# sum being 0 means blank space
if (sum == 0):
if (setSpaceTop):
spaceTop = indexCount
setSpaceTop = False # spaceTop will be set once for each start of a space between lines
indexCount += 1
spaceBottom = indexCount
if (i < len(hpList)-1): # this condition is necessary to avoid array index out of bound error
# if the next horizontal projectin is 0, keep on counting, it's still in blank space
if (hpList[i+1] == 0):
continue
# we are using this condition if the previous contour is very thin and possibly not a line
if (includeNextSpace):
space_zero.append(spaceBottom-spaceTop)
else:
if (len(space_zero) == 0):
previous = 0
else:
previous = space_zero.pop()
space_zero.append(previous + spaceBottom-lineTop)
# next time we encounter 0, it's begining of another space so we set new spaceTop
setSpaceTop = True
# sum greater than 0 means contour
if (sum > 0):
if (setLineTop):
lineTop = indexCount
setLineTop = False # lineTop will be set once for each start of a new line/contour
indexCount += 1
lineBottom = indexCount
if (i < len(hpList)-1): # this condition is necessary to avoid array index out of bound error
# if the next horizontal projectin is > 0, keep on counting, it's still in contour
if (hpList[i+1] > 0):
continue
# if the line/contour is too thin <10 pixels (arbitrary) in height, we ignore it.
# Also, we add the space following this and this contour itself to the previous space to form a bigger space: spaceBottom-lineTop.
if (lineBottom-lineTop < 20):
includeNextSpace = False
setLineTop = True # next time we encounter value > 0, it's begining of another line/contour so we set new lineTop
continue
# the line/contour is accepted, new space following it will be accepted
includeNextSpace = True
# append the top and bottom horizontal indices of the line/contour in 'lines'
lines.append([lineTop, lineBottom])
setLineTop = True # next time we encounter value > 0, it's begining of another line/contour so we set new lineTop
'''
# Printing the values we found so far.
for i, line in enumerate(lines):
print
print i
print line[0]
print line[1]
print len(hpList[line[0]:line[1]])
print hpList[line[0]:line[1]]
for i, line in enumerate(lines):
cv2.imshow("line "+str(i), img[line[0]:line[1], : ])
'''
# SECOND we extract the very individual lines from the lines/contours we extracted above.
fineLines = [] # a 2D list storing the horizontal start index and end index of each individual line
for i, line in enumerate(lines):
# 'anchor' will locate the horizontal indices where horizontal projection is > ANCHOR_POINT for uphill or < ANCHOR_POINT for downhill(ANCHOR_POINT is arbitrary yet suitable!)
anchor = line[0]
anchorPoints = [] # python list where the indices obtained by 'anchor' will be stored
# it implies that we expect to find the start of an individual line (vertically), climbing up the histogram
upHill = True
# it implies that we expect to find the end of an individual line (vertically), climbing down the histogram
downHill = False
# we put the region of interest of the horizontal projection of each contour here
segment = hpList[line[0]:line[1]]
for j, sum in enumerate(segment):
if (upHill):
if (sum < ANCHOR_POINT):
anchor += 1
continue
anchorPoints.append(anchor)
upHill = False
downHill = True
if (downHill):
if (sum > ANCHOR_POINT):
anchor += 1
continue
anchorPoints.append(anchor)
downHill = False
upHill = True
# print anchorPoints
# we can ignore the contour here
if (len(anchorPoints) < 2):
continue
'''
# the contour turns out to be an individual line
if(len(anchorPoints)<=3):
fineLines.append(line)
continue
'''
# len(anchorPoints) > 3 meaning contour composed of multiple lines
lineTop = line[0]
for x in range(1, len(anchorPoints)-1, 2):
# 'lineMid' is the horizontal index where the segmentation will be done
lineMid = (anchorPoints[x]+anchorPoints[x+1])/2
lineBottom = lineMid
# line having height of pixels <20 is considered defects, so we just ignore it
# this is a weakness of the algorithm to extract lines (anchor value is ANCHOR_POINT, see for different values!)
if (lineBottom-lineTop < 20):
continue
fineLines.append([lineTop, lineBottom])
lineTop = lineBottom
if (line[1]-lineTop < 20):
continue
fineLines.append([lineTop, line[1]])
# LINE SPACING and LETTER SIZE will be extracted here
# We will count the total number of pixel rows containing upper and lower zones of the lines and add the space_zero/runs of 0's(excluding first and last of the list ) to it.
# We will count the total number of pixel rows containing midzones of the lines for letter size.
# For this, we set an arbitrary (yet suitable!) threshold MIDZONE_THRESHOLD = 15000 in horizontal projection to identify the midzone containing rows.
# These two total numbers will be divided by number of lines (having at least one row>MIDZONE_THRESHOLD) to find average line spacing and average letter size.
space_nonzero_row_count = 0
midzone_row_count = 0
lines_having_midzone_count = 0
flag = False
for i, line in enumerate(fineLines):
segment = hpList[int(line[0]):int(line[1])]
for j, sum in enumerate(segment):
if (sum < MIDZONE_THRESHOLD):
space_nonzero_row_count += 1
else:
midzone_row_count += 1
flag = True
# This line has contributed at least one count of pixel row of midzone
if (flag):
lines_having_midzone_count += 1
flag = False
# error prevention ^-^
if (lines_having_midzone_count == 0):
lines_having_midzone_count = 1
# excluding first and last entries: Top and Bottom margins
total_space_row_count = space_nonzero_row_count + np.sum(space_zero[1:-1])
# the number of spaces is 1 less than number of lines but total_space_row_count contains the top and bottom spaces of the line
average_line_spacing = float(
total_space_row_count) / lines_having_midzone_count
average_letter_size = float(midzone_row_count) / lines_having_midzone_count
# letter size is actually height of the letter and we are not considering width
LETTER_SIZE = average_letter_size
# error prevention ^-^
if (average_letter_size == 0):
average_letter_size = 1
# We can't just take the average_line_spacing as a feature directly. We must take the average_line_spacing relative to average_letter_size.
# Let's take the ratio of average_line_spacing to average_letter_size as the LINE SPACING, which is perspective to average_letter_size.
relative_line_spacing = average_line_spacing / average_letter_size
LINE_SPACING = relative_line_spacing
# Top marging is also taken relative to average letter size of the handwritting
relative_top_margin = float(topMarginCount) / average_letter_size
TOP_MARGIN = relative_top_margin
# showing the final extracted lines
for i, line in enumerate(fineLines):
cv2.imshow("line "+str(i), img[line[0]:line[1], :])
# print space_zero
# print lines
# print fineLines
# print midzone_row_count
# print total_space_row_count
# print len(hpList)
# print average_line_spacing
# print lines_having_midzone_count
# print i
print "Average letter size: "+str(average_letter_size)
print "Top margin relative to average letter size: "+str(relative_top_margin)
print "Average line spacing relative to average letter size: "+str(relative_line_spacing)
return fineLines
''' function to extract words from the lines using vertical projection '''
def extractWords(image, lines):
global LETTER_SIZE
global WORD_SPACING
# apply bilateral filter
filtered = bilateralFilter(image, 5)
# convert to grayscale and binarize the image by INVERTED binary thresholding
thresh = threshold(filtered, 180)
# cv2.imshow('thresh', wthresh)
# Width of the whole document is found once.
width = thresh.shape[1]
space_zero = [] # stores the amount of space between words
words = [] # a 2D list storing the coordinates of each word: y1, y2, x1, x2
# Isolated words or components will be extacted from each line by looking at occurance of 0's in its vertical projection.
for i, line in enumerate(lines):
extract = thresh[int(line[0]):int(line[1]), 0:width] # y1:y2, x1:x2
vp = verticalProjection(extract)
# print i
# print vp
wordStart = 0
wordEnd = 0
spaceStart = 0
spaceEnd = 0
indexCount = 0
setWordStart = True
setSpaceStart = True
includeNextSpace = True
spaces = []
# we are scanning the vertical projection
for j, sum in enumerate(vp):
# sum being 0 means blank space
if (sum == 0):
if (setSpaceStart):
spaceStart = indexCount
# spaceStart will be set once for each start of a space between lines
setSpaceStart = False
indexCount += 1
spaceEnd = indexCount
if (j < len(vp)-1): # this condition is necessary to avoid array index out of bound error
# if the next vertical projectin is 0, keep on counting, it's still in blank space
if (vp[j+1] == 0):
continue
# we ignore spaces which is smaller than half the average letter size
if ((spaceEnd-spaceStart) > int(LETTER_SIZE/2)):
spaces.append(spaceEnd-spaceStart)
# next time we encounter 0, it's begining of another space so we set new spaceStart
setSpaceStart = True
# sum greater than 0 means word/component
if (sum > 0):
if (setWordStart):
wordStart = indexCount
setWordStart = False # wordStart will be set once for each start of a new word/component
indexCount += 1
wordEnd = indexCount
if (j < len(vp)-1): # this condition is necessary to avoid array index out of bound error
# if the next horizontal projectin is > 0, keep on counting, it's still in non-space zone
if (vp[j+1] > 0):
continue
# append the coordinates of each word/component: y1, y2, x1, x2 in 'words'
# we ignore the ones which has height smaller than half the average letter size
# this will remove full stops and commas as an individual component
count = 0
for k in range(int(line[1])-int(line[0])):
row = thresh[line[0]+k:line[0]+k+1,
wordStart:wordEnd] # y1:y2, x1:x2
if (np.sum(row)):
count += 1
if (count > int(LETTER_SIZE/2)):
words.append([line[0], line[1], wordStart, wordEnd])
# next time we encounter value > 0, it's begining of another word/component so we set new wordStart
setWordStart = True
space_zero.extend(spaces[1:-1])
# print space_zero
space_columns = np.sum(space_zero)
space_count = len(space_zero)
if (space_count == 0):
space_count = 1
average_word_spacing = float(space_columns) / space_count
if (LETTER_SIZE == 0):
LETTER_SIZE = 1
relative_word_spacing = average_word_spacing / LETTER_SIZE
WORD_SPACING = relative_word_spacing
# print "Average word spacing: "+str(average_word_spacing)
print "Average word spacing relative to average letter size: "+str(relative_word_spacing)
return words
''' function to determine the average slant of the handwriting '''
def extractSlant(img, words):
global SLANT_ANGLE
'''
0.01 radian = 0.5729578 degree :: I had to put this instead of 0.0 becuase there was a bug yeilding inacurate value which I could not figure out!
5 degree = 0.0872665 radian :: Hardly noticeable or a very little slant
15 degree = 0.261799 radian :: Easily noticeable or average slant
30 degree = 0.523599 radian :: Above average slant
45 degree = 0.785398 radian :: Extreme slant
'''
# We are checking for 9 different values of angle
theta = [-0.785398, -0.523599, -0.261799, -0.0872665,
0.01, 0.0872665, 0.261799, 0.523599, 0.785398]
# theta = [-0.785398, -0.523599, -0.436332, -0.349066, -0.261799, -0.174533, -0.0872665, 0, 0.0872665, 0.174533, 0.261799, 0.349066, 0.436332, 0.523599, 0.785398]
# Corresponding index of the biggest value will be the index of the most likely angle in 'theta'
s_function = [0.0] * 9
count_ = [0]*9
# apply bilateral filter
filtered = bilateralFilter(img, 5)
# convert to grayscale and binarize the image by INVERTED binary thresholding
# it's better to clear unwanted dark areas at the document left edge and use a high threshold value to preserve more text pixels
thresh = threshold(filtered, 180)
# cv2.imshow('thresh', lthresh)
# loop for each value of angle in theta
for i, angle in enumerate(theta):
s_temp = 0.0 # overall sum of the functions of all the columns of all the words!
count = 0 # just counting the number of columns considered to contain a vertical stroke and thus contributing to s_temp
# loop for each word
for j, word in enumerate(words):
original = thresh[int(word[0]):int(word[1]), int(
word[2]):int(word[3])] # y1:y2, x1:x2
height = int(word[1])-int(word[0])
width = int(word[3]) - int(word[2])
# the distance in pixel we will shift for affine transformation
# it's divided by 2 because the uppermost point and the lowermost points are being equally shifted in opposite directions
shift = (math.tan(angle) * height) / 2
# the amount of extra space we need to add to the original image to preserve information
# yes, this is adding more number of columns but the effect of this will be negligible
pad_length = abs(int(shift))
# create a new image that can perfectly hold the transformed and thus widened image
blank_image = np.zeros((height, width+pad_length*2, 3), np.uint8)
new_image = cv2.cvtColor(blank_image, cv2.COLOR_BGR2GRAY)
new_image[:, pad_length:width+pad_length] = original
# points to consider for affine transformation
(height, width) = new_image.shape[:2]
x1 = width/2
y1 = 0
x2 = width/4
y2 = height
x3 = 3*width/4
y3 = height
pts1 = np.float32([[x1, y1], [x2, y2], [x3, y3]])
pts2 = np.float32([[x1+shift, y1], [x2-shift, y2], [x3-shift, y3]])
M = cv2.getAffineTransform(pts1, pts2)
deslanted = cv2.warpAffine(new_image, M, (width, height))
# find the vertical projection on the transformed image
vp = verticalProjection(deslanted)
# loop for each value of vertical projection, which is for each column in the word image
for k, sum in enumerate(vp):
# the columns is empty
if (sum == 0):
continue
# this is the number of foreground pixels in the column being considered
num_fgpixel = sum / 255
# if number of foreground pixels is less than onethird of total pixels, it is not a vertical stroke so we can ignore
if (num_fgpixel < int(height/3)):
continue
# the column itself is extracted, and flattened for easy operation
column = deslanted[0:height, k:k+1]
column = column.flatten()
# now we are going to find the distance between topmost pixel and bottom-most pixel
# l counts the number of empty pixels from top until and upto a foreground pixel is discovered
for l, pixel in enumerate(column):
if (pixel == 0):
continue
break
# m counts the number of empty pixels from bottom until and upto a foreground pixel is discovered
for m, pixel in enumerate(column[::-1]):
if (pixel == 0):
continue
break
# the distance is found as delta_y, I just followed the naming convention in the research paper I followed
delta_y = height - (l+m)
# please refer the research paper for more details of this function, anyway it's nothing tricky
h_sq = (float(num_fgpixel)/delta_y)**2
# I am multiplying by a factor of num_fgpixel/height to the above function to yeild better result
# this will also somewhat negate the effect of adding more columns and different column counts in the transformed image of the same word
h_wted = (h_sq * num_fgpixel) / height
'''
# just printing
if(j==0):
print column
print str(i)+' h_sq='+str(h_sq)+' h_wted='+str(h_wted)+' num_fgpixel='+str(num_fgpixel)+' delta_y='+str(delta_y)
'''
# add up the values from all the loops of ALL the columns of ALL the words in the image
s_temp += h_wted
count += 1
if (j == 0):
# plt.subplot(),plt.imshow(deslanted),plt.title('Output '+str(i))
# plt.show()
cv2.imshow('Output '+str(i)+str(j), deslanted)
# print vp
# print 'line '+str(i)+' '+str(s_temp)
# print
s_function[i] = s_temp
count_[i] = count
# finding the largest value and corresponding index
max_value = 0.0
max_index = 4
for index, value in enumerate(s_function):
print str(index)+" "+str(value)+" "+str(count_[index])
if (value > max_value):
max_value = value
max_index = index
# We will add another value 9 manually to indicate irregular slant behaviour.
# This will be seen as value 4 (no slant) but 2 corresponding angles of opposite sign will have very close values.
if (max_index == 0):
angle = 45
result = " : Extremely right slanted"
elif (max_index == 1):
angle = 30
result = " : Above average right slanted"
elif (max_index == 2):
angle = 15
result = " : Average right slanted"
elif (max_index == 3):
angle = 5
result = " : A little right slanted"
elif (max_index == 5):
angle = -5
result = " : A little left slanted"
elif (max_index == 6):
angle = -15
result = " : Average left slanted"
elif (max_index == 7):
angle = -30
result = " : Above average left slanted"
elif (max_index == 8):
angle = -45
result = " : Extremely left slanted"
elif (max_index == 4):
p = s_function[4] / s_function[3]
q = s_function[4] / s_function[5]
print 'p='+str(p)+' q='+str(q)
# the constants here are abritrary but I think suits the best
if ((p <= 1.2 and q <= 1.2) or (p > 1.4 and q > 1.4)):
angle = 0
result = " : No slant"
elif ((p <= 1.2 and q-p > 0.4) or (q <= 1.2 and p-q > 0.4)):
angle = 0
result = " : No slant"
else:
max_index = 9
angle = 180
result = " : Irregular slant behaviour"
if angle == 0:
print "Slant determined to be straight."
else:
print "Slant determined to be erratic."
'''
type = raw_input("Enter if okay, else enter 'c' to change: ")
if type=='c':
if angle == 0:
angle = 180
result = " : Irregular slant behaviour"
else:
angle = 0
result = " : No slant"
'''
SLANT_ANGLE = angle
print "Slant angle(degree): "+str(SLANT_ANGLE)+result
return
''' function to extract average pen pressure of the handwriting '''
def barometer(image):
global PEN_PRESSURE
# it's extremely necessary to convert to grayscale first
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# inverting the image pixel by pixel individually. This costs the maximum time and processing in the entire process!
h, w = image.shape[:]
inverted = image
for x in range(h):
for y in range(w):
inverted[x][y] = 255 - image[x][y]
cv2.imshow('inverted', inverted)
# bilateral filtering
filtered = bilateralFilter(inverted, 3)
# binary thresholding. Here we use 'threshold to zero' which is crucial for what we want.
# If src(x,y) is lower than threshold=100, the new pixel value will be set to 0, else it will be left untouched!
ret, thresh = cv2.threshold(filtered, 100, 255, cv2.THRESH_TOZERO)
cv2.imshow('thresh', thresh)
# add up all the non-zero pixel values in the image and divide by the number of them to find the average pixel value in the whole image
total_intensity = 0
pixel_count = 0
for x in range(h):
for y in range(w):
if (thresh[x][y] > 0):
total_intensity += thresh[x][y]
pixel_count += 1
average_intensity = float(total_intensity) / pixel_count
PEN_PRESSURE = average_intensity
# print total_intensity
# print pixel_count
print "Average pen pressure: "+str(average_intensity)
return
''' main '''
def main():
# read image from disk
image = cv2.imread('images/007-0.png')
cv2.imshow('image', image)
# Extract pen pressure. It's such a cool function name!
# barometer(image)
# apply contour operation to straighten the contours which may be a single line or composed of multiple lines
# the returned image is straightened version of the original image without filtration and binarization
straightened = straighten(image)
cv2.imshow('straightened', straightened)
# extract lines of handwritten text from the image using the horizontal projection
# it returns a 2D list of the vertical starting and ending index/pixel row location of each line in the handwriting
# lineIndices = extractLines(straightened)
# print lineIndices
# print
# extract words from each line using vertical projection
# it returns a 4D list of the vertical starting and ending indices and horizontal starting and ending indices (in that order) of each word in the handwriting
# wordCoordinates = extractWords(straightened, lineIndices)
# print wordCoordinates
# print len(wordCoordinates)
# for i, item in enumerate(wordCoordinates):
# cv2.imshow('item '+str(i), straightened[item[0]:item[1], item[2]:item[3]])
# extract average slant angle of all the words containing a long vertical stroke
# extractSlant(straightened, wordCoordinates)
cv2.waitKey(0)
return
main()