forked from libsdl-org/SDL_image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tiny_jpeg.h
1330 lines (1132 loc) · 40.7 KB
/
tiny_jpeg.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* tiny_jpeg.h
*
* Tiny JPEG Encoder
* - Sergio Gonzalez
*
* This is a readable and simple single-header JPEG encoder.
*
* Features
* - Implements Baseline DCT JPEG compression.
* - No dynamic allocations.
*
* This library is coded in the spirit of the stb libraries and mostly follows
* the stb guidelines.
*
* It is written in C99. And depends on the C standard library.
* Works with C++11
*
*
* ==== Thanks ====
*
* AssociationSirius (Bug reports)
* Bernard van Gastel (Thread-safe defaults, BSD compilation)
*
*
* ==== License ====
*
* This software is in the public domain. Where that dedication is not
* recognized, you are granted a perpetual, irrevocable license to copy and
* modify this file as you see fit.
*
*/
// ============================================================
// Usage
// ============================================================
// Include "tiny_jpeg.h" to and use the public interface defined below.
//
// You *must* do:
//
// #define TJE_IMPLEMENTATION
// #include "tiny_jpeg.h"
//
// in exactly one of your C files to actually compile the implementation.
// Here is an example program that loads a bmp with stb_image and writes it
// with Tiny JPEG
/*
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define TJE_IMPLEMENTATION
#include "tiny_jpeg.h"
int main()
{
int width, height, num_components;
unsigned char* data = stbi_load("in.bmp", &width, &height, &num_components, 0);
if ( !data ) {
puts("Could not find file");
return EXIT_FAILURE;
}
if ( !tje_encode_to_file("out.jpg", width, height, num_components, data, width * num_components) ) {
fprintf(stderr, "Could not write JPEG\n");
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
*/
#ifdef __cplusplus
extern "C"
{
#endif
// ============================================================
// Public interface:
// ============================================================
#ifndef TJE_HEADER_GUARD
#define TJE_HEADER_GUARD
// - tje_encode_to_file -
//
// Usage:
// Takes bitmap data and writes a JPEG-encoded image to disk.
//
// PARAMETERS
// dest_path: filename to which we will write. e.g. "out.jpg"
// width, height: image size in pixels
// num_components: 3 is RGB. 4 is RGBA. Those are the only supported values
// src_data: pointer to the pixel data.
//
// RETURN:
// 0 on error. 1 on success.
int tje_encode_to_file(const char* dest_path,
const int width,
const int height,
const int num_components,
const unsigned char* src_data,
const int pitch);
// - tje_encode_to_file_at_quality -
//
// Usage:
// Takes bitmap data and writes a JPEG-encoded image to disk.
//
// PARAMETERS
// dest_path: filename to which we will write. e.g. "out.jpg"
// quality: 3: Highest. Compression varies wildly (between 1/3 and 1/20).
// 2: Very good quality. About 1/2 the size of 3.
// 1: Noticeable. About 1/6 the size of 3, or 1/3 the size of 2.
// width, height: image size in pixels
// num_components: 3 is RGB. 4 is RGBA. Those are the only supported values
// src_data: pointer to the pixel data.
//
// RETURN:
// 0 on error. 1 on success.
int tje_encode_to_file_at_quality(const char* dest_path,
const int quality,
const int width,
const int height,
const int num_components,
const unsigned char* src_data,
const int pitch);
// - tje_encode_with_func -
//
// Usage
// Same as tje_encode_to_file_at_quality, but it takes a callback that knows
// how to handle (or ignore) `context`. The callback receives an array `data`
// of `size` bytes, which can be written directly to a file. There is no need
// to free the data.
typedef void tje_write_func(void* context, void* data, int size);
int tje_encode_with_func(tje_write_func* func,
void* context,
const int quality,
const int width,
const int height,
const int num_components,
const unsigned char* src_data,
const int pitch);
#endif // TJE_HEADER_GUARD
// Implementation: In exactly one of the source files of your application,
// define TJE_IMPLEMENTATION and include tiny_jpeg.h
// ============================================================
// Internal
// ============================================================
#ifdef TJE_IMPLEMENTATION
#define tjei_min(a, b) ((a) < b) ? (a) : (b);
#define tjei_max(a, b) ((a) < b) ? (b) : (a);
#if defined(_MSC_VER)
#define TJEI_FORCE_INLINE __forceinline
// #define TJEI_FORCE_INLINE __declspec(noinline) // For profiling
#else
#define TJEI_FORCE_INLINE static // TODO: equivalent for gcc & clang
#endif
// Only use zero for debugging and/or inspection.
#define TJE_USE_FAST_DCT 1
#if 0 /* SDL_image change */
// C std lib
#include <assert.h>
#include <inttypes.h>
#include <math.h> // floorf, ceilf
#include <stdio.h> // FILE, puts
#include <string.h> // memcpy
#endif
#define TJEI_BUFFER_SIZE 1024
#if 0 /* SDL_image change */
#ifdef _WIN32
#include <windows.h>
#ifndef snprintf
#define snprintf sprintf_s
#endif
// Not quite the same but it works for us. If I am not mistaken, it differs
// only in the return value.
#endif
#ifndef NDEBUG
#ifdef _WIN32
#define tje_log(msg) OutputDebugStringA(msg)
#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
#define tje_log(msg) puts(msg)
#else
#warning "need a tje_log definition for your platform for debugging purposes (not needed if compiling with NDEBUG)"
#endif
#else // NDEBUG
#define tje_log(msg)
#endif // NDEBUG
#endif
typedef struct
{
void* context;
tje_write_func* func;
} TJEWriteContext;
typedef struct
{
// Huffman data.
uint8_t ehuffsize[4][257];
uint16_t ehuffcode[4][256];
uint8_t const * ht_bits[4];
uint8_t const * ht_vals[4];
// Cuantization tables.
uint8_t qt_luma[64];
uint8_t qt_chroma[64];
// fwrite by default. User-defined when using tje_encode_with_func.
TJEWriteContext write_context;
// Buffered output. Big performance win when using the usual stdlib implementations.
size_t output_buffer_count;
uint8_t output_buffer[TJEI_BUFFER_SIZE];
} TJEState;
// ============================================================
// Table definitions.
//
// The spec defines tjei_default reasonably good quantization matrices and huffman
// specification tables.
//
//
// Instead of hard-coding the final huffman table, we only hard-code the table
// spec suggested by the specification, and then derive the full table from
// there. This is only for didactic purposes but it might be useful if there
// ever is the case that we need to swap huffman tables from various sources.
// ============================================================
// K.1 - suggested luminance QT
static const uint8_t tjei_default_qt_luma_from_spec[] =
{
16,11,10,16, 24, 40, 51, 61,
12,12,14,19, 26, 58, 60, 55,
14,13,16,24, 40, 57, 69, 56,
14,17,22,29, 51, 87, 80, 62,
18,22,37,56, 68,109,103, 77,
24,35,55,64, 81,104,113, 92,
49,64,78,87,103,121,120,101,
72,92,95,98,112,100,103, 99,
};
// Unused
#if 0
static const uint8_t tjei_default_qt_chroma_from_spec[] =
{
// K.1 - suggested chrominance QT
17,18,24,47,99,99,99,99,
18,21,26,66,99,99,99,99,
24,26,56,99,99,99,99,99,
47,66,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,
99,99,99,99,99,99,99,99,
};
#endif
static const uint8_t tjei_default_qt_chroma_from_paper[] =
{
// Example QT from JPEG paper
16, 12, 14, 14, 18, 24, 49, 72,
11, 10, 16, 24, 40, 51, 61, 12,
13, 17, 22, 35, 64, 92, 14, 16,
22, 37, 55, 78, 95, 19, 24, 29,
56, 64, 87, 98, 26, 40, 51, 68,
81, 103, 112, 58, 57, 87, 109, 104,
121,100, 60, 69, 80, 103, 113, 120,
103, 55, 56, 62, 77, 92, 101, 99,
};
// == Procedure to 'deflate' the huffman tree: JPEG spec, C.2
// Number of 16 bit values for every code length. (K.3.3.1)
static const uint8_t tjei_default_ht_luma_dc_len[16] =
{
0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0
};
// values
static const uint8_t tjei_default_ht_luma_dc[12] =
{
0,1,2,3,4,5,6,7,8,9,10,11
};
// Number of 16 bit values for every code length. (K.3.3.1)
static const uint8_t tjei_default_ht_chroma_dc_len[16] =
{
0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0
};
// values
static const uint8_t tjei_default_ht_chroma_dc[12] =
{
0,1,2,3,4,5,6,7,8,9,10,11
};
// Same as above, but AC coefficients.
static const uint8_t tjei_default_ht_luma_ac_len[16] =
{
0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d
};
static const uint8_t tjei_default_ht_luma_ac[] =
{
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2,
0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
0xF9, 0xFA
};
static const uint8_t tjei_default_ht_chroma_ac_len[16] =
{
0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77
};
static const uint8_t tjei_default_ht_chroma_ac[] =
{
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0,
0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26,
0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5,
0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3,
0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA,
0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
0xF9, 0xFA
};
// ============================================================
// Code
// ============================================================
// Zig-zag order:
static const uint8_t tjei_zig_zag[64] =
{
0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63,
};
// Memory order as big endian.
// On little-endian machines: 0xhilo -> 0xlohi which looks as 0xhi 0xlo in memory
// On big-endian machines: leave 0xhilo unchanged
static uint16_t tjei_be_word(const uint16_t native_word)
{
uint8_t bytes[2];
uint16_t result;
bytes[1] = (native_word & 0x00ff);
bytes[0] = ((native_word & 0xff00) >> 8);
memcpy(&result, bytes, sizeof(bytes));
return result;
}
// ============================================================
// The following structs exist only for code clarity, debugability, and
// readability. They are used when writing to disk, but it is useful to have
// 1-packed-structs to document how the format works, and to inspect memory
// while developing.
// ============================================================
static const uint8_t tjeik_jfif_id[] = "JFIF";
static const uint8_t tjeik_com_str[] = "Created by Tiny JPEG Encoder";
// TODO: Get rid of packed structs!
#pragma pack(push,1)
typedef struct
{
uint16_t SOI;
// JFIF header.
uint16_t APP0;
uint16_t jfif_len;
uint8_t jfif_id[5];
uint16_t version;
uint8_t units;
uint16_t x_density;
uint16_t y_density;
uint8_t x_thumb;
uint8_t y_thumb;
} TJEJPEGHeader;
typedef struct
{
uint16_t com;
uint16_t com_len;
char com_str[sizeof(tjeik_com_str) - 1];
} TJEJPEGComment;
// Helper struct for TJEFrameHeader (below).
typedef struct
{
uint8_t component_id;
uint8_t sampling_factors; // most significant 4 bits: horizontal. 4 LSB: vertical (A.1.1)
uint8_t qt; // Quantization table selector.
} TJEComponentSpec;
typedef struct
{
uint16_t SOF;
uint16_t len; // 8 + 3 * frame.num_components
uint8_t precision; // Sample precision (bits per sample).
uint16_t height;
uint16_t width;
uint8_t num_components; // For this implementation, will be equal to 3.
TJEComponentSpec component_spec[3];
} TJEFrameHeader;
typedef struct
{
uint8_t component_id; // Just as with TJEComponentSpec
uint8_t dc_ac; // (dc|ac)
} TJEFrameComponentSpec;
typedef struct
{
uint16_t SOS;
uint16_t len;
uint8_t num_components; // 3.
TJEFrameComponentSpec component_spec[3];
uint8_t first; // 0
uint8_t last; // 63
uint8_t ah_al; // o
} TJEScanHeader;
#pragma pack(pop)
static void tjei_write(TJEState* state, const void* data, size_t num_bytes, size_t num_elements)
{
size_t to_write = num_bytes * num_elements;
// Cap to the buffer available size and copy memory.
size_t capped_count = tjei_min(to_write, TJEI_BUFFER_SIZE - 1 - state->output_buffer_count);
memcpy(state->output_buffer + state->output_buffer_count, data, capped_count);
state->output_buffer_count += capped_count;
assert (state->output_buffer_count <= TJEI_BUFFER_SIZE - 1);
// Flush the buffer.
if ( state->output_buffer_count == TJEI_BUFFER_SIZE - 1 ) {
state->write_context.func(state->write_context.context, state->output_buffer, (int)state->output_buffer_count);
state->output_buffer_count = 0;
}
// Recursively calling ourselves with the rest of the buffer.
if (capped_count < to_write) {
tjei_write(state, (uint8_t*)data+capped_count, to_write - capped_count, 1);
}
}
static void tjei_write_DQT(TJEState* state, const uint8_t* matrix, uint8_t id)
{
uint16_t DQT = tjei_be_word(0xffdb);
uint16_t len = tjei_be_word(0x0043); // 2(len) + 1(id) + 64(matrix) = 67 = 0x43
uint8_t precision_and_id = id; // 0x0000 8 bits | 0x00id
tjei_write(state, &DQT, sizeof(uint16_t), 1);
tjei_write(state, &len, sizeof(uint16_t), 1);
assert(id < 4);
tjei_write(state, &precision_and_id, sizeof(uint8_t), 1);
// Write matrix
tjei_write(state, matrix, 64*sizeof(uint8_t), 1);
}
typedef enum
{
TJEI_DC = 0,
TJEI_AC = 1
} TJEHuffmanTableClass;
static void tjei_write_DHT(TJEState* state,
uint8_t const * matrix_len,
uint8_t const * matrix_val,
TJEHuffmanTableClass ht_class,
uint8_t id)
{
int i, num_values = 0;
uint16_t DHT, len;
uint8_t tc_th;
for ( i = 0; i < 16; ++i ) {
num_values += matrix_len[i];
}
assert(num_values <= 0xffff);
DHT = tjei_be_word(0xffc4);
// 2(len) + 1(Tc|th) + 16 (num lengths) + ?? (num values)
len = tjei_be_word(2 + 1 + 16 + (uint16_t)num_values);
assert(id < 4);
tc_th = (uint8_t)((((uint8_t)ht_class) << 4) | id);
tjei_write(state, &DHT, sizeof(uint16_t), 1);
tjei_write(state, &len, sizeof(uint16_t), 1);
tjei_write(state, &tc_th, sizeof(uint8_t), 1);
tjei_write(state, matrix_len, sizeof(uint8_t), 16);
tjei_write(state, matrix_val, sizeof(uint8_t), (size_t)num_values);
}
// ============================================================
// Huffman deflation code.
// ============================================================
// Returns all code sizes from the BITS specification (JPEG C.3)
static uint8_t* tjei_huff_get_code_lengths(uint8_t huffsize[/*256*/], uint8_t const * bits)
{
int i, j, k = 0;
for ( i = 0; i < 16; ++i ) {
for ( j = 0; j < bits[i]; ++j ) {
huffsize[k++] = (uint8_t)(i + 1);
}
huffsize[k] = 0;
}
return huffsize;
}
// Fills out the prefixes for each code.
static uint16_t* tjei_huff_get_codes(uint16_t codes[], uint8_t* huffsize, int64_t count)
{
uint16_t code = 0;
int k = 0;
uint8_t sz = huffsize[0];
for(;;) {
do {
assert(k < count);
codes[k++] = code++;
} while (huffsize[k] == sz);
if (huffsize[k] == 0) {
return codes;
}
do {
code = (uint16_t)(code << 1);
++sz;
} while( huffsize[k] != sz );
}
}
static void tjei_huff_get_extended(uint8_t* out_ehuffsize,
uint16_t* out_ehuffcode,
uint8_t const * huffval,
uint8_t* huffsize,
uint16_t* huffcode, int64_t count)
{
int k = 0;
do {
uint8_t val = huffval[k];
out_ehuffcode[val] = huffcode[k];
out_ehuffsize[val] = huffsize[k];
k++;
} while ( k < count );
}
// ============================================================
// Returns:
// out[1] : number of bits
// out[0] : bits
TJEI_FORCE_INLINE void tjei_calculate_variable_length_int(int value, uint16_t out[2])
{
int abs_val = value;
if ( value < 0 ) {
abs_val = -abs_val;
--value;
}
out[1] = 1;
while( abs_val >>= 1 ) {
++out[1];
}
out[0] = (uint16_t)(value & ((1 << out[1]) - 1));
}
// Write bits to file.
TJEI_FORCE_INLINE void tjei_write_bits(TJEState* state,
uint32_t* bitbuffer, uint32_t* location,
uint16_t num_bits, uint16_t bits)
{
// v-- location
// [ ] <-- bit buffer
// 32 0
//
// This call pushes to the bitbuffer and saves the location. Data is pushed
// from most significant to less significant.
// When we can write a full byte, we write a byte and shift.
// Push the stack.
uint32_t nloc = *location + num_bits;
*bitbuffer |= (uint32_t)(bits << (32 - nloc));
*location = nloc;
while ( *location >= 8 ) {
// Grab the most significant byte.
uint8_t c = (uint8_t)((*bitbuffer) >> 24);
// Write it to file.
tjei_write(state, &c, 1, 1);
if ( c == 0xff ) {
// Special case: tell JPEG this is not a marker.
char z = 0;
tjei_write(state, &z, 1, 1);
}
// Pop the stack.
*bitbuffer <<= 8;
*location -= 8;
}
}
#if TJE_USE_FAST_DCT
// DCT implementation by Thomas G. Lane.
// Obtained through NVIDIA
// http://developer.download.nvidia.com/SDK/9.5/Samples/vidimaging_samples.html#gpgpu_dct
//
// QUOTE:
// This implementation is based on Arai, Agui, and Nakajima's algorithm for
// scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
// Japanese, but the algorithm is described in the Pennebaker & Mitchell
// JPEG textbook (see REFERENCES section in file README). The following code
// is based directly on figure 4-8 in P&M.
//
static void tjei_fdct (float * data)
{
float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
float tmp10, tmp11, tmp12, tmp13;
float z1, z2, z3, z4, z5, z11, z13;
float *dataptr;
int ctr;
/* Pass 1: process rows. */
dataptr = data;
for ( ctr = 7; ctr >= 0; ctr-- ) {
tmp0 = dataptr[0] + dataptr[7];
tmp7 = dataptr[0] - dataptr[7];
tmp1 = dataptr[1] + dataptr[6];
tmp6 = dataptr[1] - dataptr[6];
tmp2 = dataptr[2] + dataptr[5];
tmp5 = dataptr[2] - dataptr[5];
tmp3 = dataptr[3] + dataptr[4];
tmp4 = dataptr[3] - dataptr[4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[0] = tmp10 + tmp11; /* phase 3 */
dataptr[4] = tmp10 - tmp11;
z1 = (tmp12 + tmp13) * ((float) 0.707106781); /* c4 */
dataptr[2] = tmp13 + z1; /* phase 5 */
dataptr[6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = (tmp10 - tmp12) * ((float) 0.382683433); /* c6 */
z2 = ((float) 0.541196100) * tmp10 + z5; /* c2-c6 */
z4 = ((float) 1.306562965) * tmp12 + z5; /* c2+c6 */
z3 = tmp11 * ((float) 0.707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[5] = z13 + z2; /* phase 6 */
dataptr[3] = z13 - z2;
dataptr[1] = z11 + z4;
dataptr[7] = z11 - z4;
dataptr += 8; /* advance pointer to next row */
}
/* Pass 2: process columns. */
dataptr = data;
for ( ctr = 8-1; ctr >= 0; ctr-- ) {
tmp0 = dataptr[8*0] + dataptr[8*7];
tmp7 = dataptr[8*0] - dataptr[8*7];
tmp1 = dataptr[8*1] + dataptr[8*6];
tmp6 = dataptr[8*1] - dataptr[8*6];
tmp2 = dataptr[8*2] + dataptr[8*5];
tmp5 = dataptr[8*2] - dataptr[8*5];
tmp3 = dataptr[8*3] + dataptr[8*4];
tmp4 = dataptr[8*3] - dataptr[8*4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[8*0] = tmp10 + tmp11; /* phase 3 */
dataptr[8*4] = tmp10 - tmp11;
z1 = (tmp12 + tmp13) * ((float) 0.707106781); /* c4 */
dataptr[8*2] = tmp13 + z1; /* phase 5 */
dataptr[8*6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = (tmp10 - tmp12) * ((float) 0.382683433); /* c6 */
z2 = ((float) 0.541196100) * tmp10 + z5; /* c2-c6 */
z4 = ((float) 1.306562965) * tmp12 + z5; /* c2+c6 */
z3 = tmp11 * ((float) 0.707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[8*5] = z13 + z2; /* phase 6 */
dataptr[8*3] = z13 - z2;
dataptr[8*1] = z11 + z4;
dataptr[8*7] = z11 - z4;
dataptr++; /* advance pointer to next column */
}
}
#endif
#if !TJE_USE_FAST_DCT
static float slow_fdct(int u, int v, float* data)
{
#define kPI 3.14159265f
float res = 0.0f;
float cu = (u == 0) ? 0.70710678118654f : 1;
float cv = (v == 0) ? 0.70710678118654f : 1;
int x, y;
for ( y = 0; y < 8; ++y ) {
for ( x = 0; x < 8; ++x ) {
res += (data[y * 8 + x]) *
cosf(((2.0f * x + 1.0f) * u * kPI) / 16.0f) *
cosf(((2.0f * y + 1.0f) * v * kPI) / 16.0f);
}
}
res *= 0.25f * cu * cv;
return res;
#undef kPI
}
#endif
#define ABS(x) ((x) < 0 ? -(x) : (x))
static void tjei_encode_and_write_MCU(TJEState* state,
float* mcu,
#if TJE_USE_FAST_DCT
float* qt, // Pre-processed quantization matrix.
#else
uint8_t* qt,
#endif
uint8_t* huff_dc_len, uint16_t* huff_dc_code, // Huffman tables
uint8_t* huff_ac_len, uint16_t* huff_ac_code,
int* pred, // Previous DC coefficient
uint32_t* bitbuffer, // Bitstack.
uint32_t* location)
{
int du[64]; // Data unit in zig-zag order
float dct_mcu[64];
int i;
#if !TJE_USE_FAST_DCT
int u, v;
#endif
int last_non_zero_i;
int diff;
uint16_t vli[2];
memcpy(dct_mcu, mcu, 64 * sizeof(float));
#if TJE_USE_FAST_DCT
tjei_fdct(dct_mcu);
for ( i = 0; i < 64; ++i ) {
float fval = dct_mcu[i];
int val;
fval *= qt[i];
#if 0
fval = (fval > 0) ? floorf(fval + 0.5f) : ceilf(fval - 0.5f);
#else
fval = floorf(fval + 1024 + 0.5f);
fval -= 1024;
#endif
val = (int)fval;
du[tjei_zig_zag[i]] = val;
}
#else
for ( v = 0; v < 8; ++v ) {
for ( u = 0; u < 8; ++u ) {
dct_mcu[v * 8 + u] = slow_fdct(u, v, mcu);
}
}
for ( i = 0; i < 64; ++i ) {
float fval = dct_mcu[i] / (qt[i]);
int val = (int)((fval > 0) ? floorf(fval + 0.5f) : ceilf(fval - 0.5f));
du[tjei_zig_zag[i]] = val;
}
#endif
// Encode DC coefficient.
diff = du[0] - *pred;
*pred = du[0];
if ( diff != 0 ) {
tjei_calculate_variable_length_int(diff, vli);
// Write number of bits with Huffman coding
tjei_write_bits(state, bitbuffer, location, huff_dc_len[vli[1]], huff_dc_code[vli[1]]);
// Write the bits.
tjei_write_bits(state, bitbuffer, location, vli[1], vli[0]);
} else {
tjei_write_bits(state, bitbuffer, location, huff_dc_len[0], huff_dc_code[0]);
}
// ==== Encode AC coefficients ====
last_non_zero_i = 0;
// Find the last non-zero element.
for ( i = 63; i > 0; --i ) {
if (du[i] != 0) {
last_non_zero_i = i;
break;
}
}
for ( i = 1; i <= last_non_zero_i; ++i ) {
// If zero, increase count. If >=15, encode (FF,00)
int zero_count = 0;
uint16_t sym1;
while ( du[i] == 0 ) {
++zero_count;
++i;
if (zero_count == 16) {
// encode (ff,00) == 0xf0
tjei_write_bits(state, bitbuffer, location, huff_ac_len[0xf0], huff_ac_code[0xf0]);
zero_count = 0;
}
}
tjei_calculate_variable_length_int(du[i], vli);
assert(zero_count < 0x10);
assert(vli[1] <= 10);
sym1 = (uint16_t)((uint16_t)zero_count << 4) | vli[1];
assert(huff_ac_len[sym1] != 0);
// Write symbol 1 --- (RUNLENGTH, SIZE)
tjei_write_bits(state, bitbuffer, location, huff_ac_len[sym1], huff_ac_code[sym1]);
// Write symbol 2 --- (AMPLITUDE)
tjei_write_bits(state, bitbuffer, location, vli[1], vli[0]);
}
if (last_non_zero_i != 63) {
// write EOB HUFF(00,00)
tjei_write_bits(state, bitbuffer, location, huff_ac_len[0], huff_ac_code[0]);
}
return;
}
enum {
TJEI_LUMA_DC,
TJEI_LUMA_AC,
TJEI_CHROMA_DC,
TJEI_CHROMA_AC,
};
#if TJE_USE_FAST_DCT
struct TJEProcessedQT
{
float chroma[64];
float luma[64];
};
#endif
// Set up huffman tables in state.
static void tjei_huff_expand(TJEState* state)
{
int32_t spec_tables_len[4];
uint8_t huffsize[4][257];
uint16_t huffcode[4][256];
int i, k;
assert(state);
memset(spec_tables_len, 0, sizeof(spec_tables_len));
state->ht_bits[TJEI_LUMA_DC] = tjei_default_ht_luma_dc_len;
state->ht_bits[TJEI_LUMA_AC] = tjei_default_ht_luma_ac_len;
state->ht_bits[TJEI_CHROMA_DC] = tjei_default_ht_chroma_dc_len;
state->ht_bits[TJEI_CHROMA_AC] = tjei_default_ht_chroma_ac_len;
state->ht_vals[TJEI_LUMA_DC] = tjei_default_ht_luma_dc;
state->ht_vals[TJEI_LUMA_AC] = tjei_default_ht_luma_ac;
state->ht_vals[TJEI_CHROMA_DC] = tjei_default_ht_chroma_dc;
state->ht_vals[TJEI_CHROMA_AC] = tjei_default_ht_chroma_ac;
// How many codes in total for each of LUMA_(DC|AC) and CHROMA_(DC|AC)
for ( i = 0; i < 4; ++i ) {
for ( k = 0; k < 16; ++k ) {
spec_tables_len[i] += state->ht_bits[i][k];
}
}
// Fill out the extended tables..
for ( i = 0; i < 4; ++i ) {
assert (256 >= spec_tables_len[i]);
tjei_huff_get_code_lengths(huffsize[i], state->ht_bits[i]);
tjei_huff_get_codes(huffcode[i], huffsize[i], spec_tables_len[i]);
}
for ( i = 0; i < 4; ++i ) {
int64_t count = spec_tables_len[i];
tjei_huff_get_extended(state->ehuffsize[i],
state->ehuffcode[i],
state->ht_vals[i],
&huffsize[i][0],
&huffcode[i][0], count);
}
}
static int tjei_encode_main(TJEState* state,
const unsigned char* src_data,
const int width,
const int height,
const int src_num_components,
const int pitch)
{
#if TJE_USE_FAST_DCT
// Again, taken from classic japanese implementation.
//
/* For float AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
* What's actually stored is 1/divisor so that the inner loop can
* use a multiplication rather than a division.
*/
static const float aan_scales[] = {
1.0f, 1.387039845f, 1.306562965f, 1.175875602f,
1.0f, 0.785694958f, 0.541196100f, 0.275899379f
};
struct TJEProcessedQT pqt;
#endif
float du_y[64];
float du_b[64];
float du_r[64];
int pred_y;
int pred_b;
int pred_r;