This repository has been archived by the owner on Jul 23, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathxcharts2.cpp
809 lines (687 loc) · 27.4 KB
/
xcharts2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/*
** Astrolog (Version 6.00) File: xcharts2.cpp
**
** IMPORTANT NOTICE: Astrolog and all chart display routines and anything
** not enumerated below used in this program are Copyright (C) 1991-2015 by
** Walter D. Pullen ([email protected], http://www.astrolog.org/astrolog.htm).
** Permission is granted to freely use, modify, and distribute these
** routines provided these credits and notices remain unmodified with any
** altered or distributed versions of the program.
**
** The main ephemeris databases and calculation routines are from the
** library SWISS EPHEMERIS and are programmed and copyright 1997-2008 by
** Astrodienst AG. The use of that source code is subject to the license for
** Swiss Ephemeris Free Edition, available at http://www.astro.com/swisseph.
** This copyright notice must not be changed or removed by any user of this
** program.
**
** Additional ephemeris databases and formulas are from the calculation
** routines in the program PLACALC and are programmed and Copyright (C)
** 1989,1991,1993 by Astrodienst AG and Alois Treindl ([email protected]). The
** use of that source code is subject to regulations made by Astrodienst
** Zurich, and the code is not in the public domain. This copyright notice
** must not be changed or removed by any user of this program.
**
** The original planetary calculation routines used in this program have
** been copyrighted and the initial core of this program was mostly a
** conversion to C of the routines created by James Neely as listed in
** 'Manual of Computer Programming for Astrologers', by Michael Erlewine,
** available from Matrix Software.
**
** The PostScript code within the core graphics routines are programmed
** and Copyright (C) 1992-1993 by Brian D. Willoughby ([email protected]).
**
** More formally: This program is free software; you can redistribute it
** and/or modify it under the terms of the GNU General Public License as
** published by the Free Software Foundation; either version 2 of the
** License, or (at your option) any later version. This program is
** distributed in the hope that it will be useful and inspiring, but
** WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
** General Public License for more details, a copy of which is in the
** LICENSE.HTM file included with Astrolog, and at http://www.gnu.org
**
** Initial programming 8/28-30/1991.
** X Window graphics initially programmed 10/23-29/1991.
** PostScript graphics initially programmed 11/29-30/1992.
** Last code change made 12/20/2015.
*/
#include "astrolog.h"
#ifdef GRAPH
/*
******************************************************************************
** Chart Graphics Utility Procedures.
******************************************************************************
*/
/* Return whether the specified object should be displayed in the current */
/* graphics chart type. For example, don't include the Moon in the solar */
/* system charts when Placalc is off, don't include house cusps in */
/* astro-graph charts, and so on, in addition to checking restrictions. */
bool FProper(int i)
{
bool f;
f = !ignore[i];
if (gi.nMode == gOrbit) /* Solar system chart */
f &= FObject(i) && (i != oMoo || us.fEphemFiles);
else if (gi.nMode == gHorizon || gi.nMode == gSector ||
fMap || gi.nMode == gGlobe || gi.nMode == gPolar)
f &= FThing(i);
else if (gi.nMode == gEphemeris)
f &= !(gs.fAlt && (i == oMoo || i == oFor));
return f;
}
/* Adjust an array of zodiac positions so that no two positions are within */
/* a certain orb of each other. This is used by the wheel drawing chart */
/* routines in order to make sure that we don't draw any planet glyphs on */
/* top of each other. We'll later draw the glyphs at the adjusted positions. */
void FillSymbolRing(real *symbol, real factor)
{
real orb = DEFORB*256.0/(real)gs.yWin*(real)gi.nScale*factor, k1, k2, temp;
int i, j, k = 1, l;
/* Keep adjusting as long as we can still make changes, or until we do 'n' */
/* rounds. (With many objects, there just may not be enough room for all.) */
for (l = 0; k && l < us.nDivision*2; l++) {
k = 0;
for (i = 0; i <= cObj; i++) if (FProper(i)) {
/* For each object, determine who is closest on either side. */
k1 = rLarge; k2 = -rLarge;
for (j = 0; j <= cObj; j++)
if (FProper(j) && i != j) {
temp = symbol[j]-symbol[i];
if (RAbs(temp) > rDegHalf)
temp -= rDegMax*RSgn(temp);
if (temp < k1 && temp > 0.0)
k1 = temp;
else if (temp > k2 && temp <= 0.0)
k2 = temp;
}
/* If an object's too close on one side, then we move to the other. */
if (k2 > -orb && k1 > orb) {
k = 1; symbol[i] = Mod(symbol[i]+orb*0.51+k2*0.49);
} else if (k1 < orb && k2 < -orb) {
k = 1; symbol[i] = Mod(symbol[i]-orb*0.51+k1*0.49);
/* If we are bracketed by close objects on both sides, then let's move */
/* to the midpoint, so we are as far away as possible from either one. */
} else if (k2 > -orb && k1 < orb) {
k = 1; symbol[i] = Mod(symbol[i]+(k1+k2)*0.5);
}
}
}
}
/* Adjust an array of longitude positions so that no two are within a */
/* certain orb of each other. This is used by the astro-graph routine to */
/* make sure we don't draw any planet glyphs marking the lines on top of */
/* each other. This is almost identical to the FillSymbolRing() routine */
/* used by the wheel charts; however, there the glyphs are placed in a */
/* continuous ring, while here we have the left and right screen edges. */
/* Also, here we are placing two sets of planets at the same time. */
void FillSymbolLine(real *symbol)
{
real orb = DEFORB*1.35*(real)gi.nScale, max = rDegMax, k1, k2, temp;
int i, j, k = 1, l;
if (gi.nMode != gEphemeris)
max *= (real)gi.nScale;
else
orb *= rDegMax/(real)gs.xWin;
/* Keep adjusting as long as we can still make changes. */
for (l = 0; k && l < us.nDivision*2; l++) {
k = 0;
for (i = 0; i <= cObj*2+1; i++)
if (FProper(i >> 1) && symbol[i] >= 0.0) {
/* For each object, determine who is closest to the left and right. */
k1 = max-symbol[i]; k2 = -symbol[i];
for (j = 0; j <= cObj*2+1; j++) {
if (FProper(j >> 1) && i != j) {
temp = symbol[j]-symbol[i];
if (temp < k1 && temp > 0.0)
k1 = temp;
else if (temp > k2 && temp <= 0.0)
k2 = temp;
}
}
/* If an object's too close on one side, then we move to the other. */
if (k2 > -orb && k1 > orb) {
k = 1; symbol[i] = symbol[i]+orb*0.51+k2*0.49;
} else if (k1 < orb && k2 < -orb) {
k = 1; symbol[i] = symbol[i]-orb*0.51+k1*0.49;
} else if (k2 > -orb && k1 < orb) {
k = 1; symbol[i] = symbol[i]+(k1+k2)*0.5;
}
}
}
}
/* Given a zodiac position, return the degree on the current wheel chart */
/* circle where that position falls, rotating based on the Ascendant and */
/* adding in the opposite direction for Vedic mode wheels. */
real PlaceInX(real deg)
{
if (us.fVedic)
deg = -chouse[1]*(gi.nMode != gWheel)*2.0-deg-60.0;
return Mod(rDegHalf-deg+gi.rAsc);
}
/* Given a zodiac degree, adjust it if need be to account for the expanding */
/* and compacting of parts the zodiac that happen when we display a graphic */
/* wheel chart such that all the houses appear the same size. */
real HousePlaceInX(real deg)
{
int in;
if (gi.nMode == gWheel) /* We only adjust for the -w -X combination. */
return deg;
in = HousePlaceIn(deg);
return Mod(ZFromS(in)+MinDistance(chouse[in], deg)/
MinDistance(chouse[in], chouse[Mod12(in+1)])*30.0);
}
/*
******************************************************************************
** Multiple Chart Graphics Routines.
******************************************************************************
*/
/* Draw another wheel chart; however, this time we have two rings of planets */
/* because we are doing a relationship chart between two sets of data. This */
/* chart is obtained when the -r0 is combined with the -X switch. */
void XChartWheelRelation()
{
real xsign[cSign+1], xhouse1[cSign+1], xplanet1[objMax], xplanet2[objMax],
symbol[objMax];
byte ignoreT[objMax];
int cx, cy, i, j;
real unitx, unity, temp;
CI ciT;
/* Set up variables and temporarily automatically decrease the horizontal */
/* chart size to leave room for the sidebar if that mode is in effect. */
if (gs.fText && !us.fVelocity)
gs.xWin -= xSideT;
cx = gs.xWin/2 - 1; cy = gs.yWin/2 - 1;
unitx = (real)cx; unity = (real)cy;
gi.rAsc = gs.objLeft ? cp1.obj[abs(gs.objLeft)-1] +
rDegQuad*(gs.objLeft < 0) : cp1.cusp[1];
if (us.fVedic)
gi.rAsc = gs.objLeft ? (gs.objLeft < 0 ? 120.0 : -60.0)-gi.rAsc : 0.0;
/* Fill out arrays with the degree of each object, cusp, and sign glyph. */
if (gi.nMode == gWheel) {
for (i = 1; i <= cSign; i++)
xhouse1[i] = PZ(cp1.cusp[i]);
} else {
gi.rAsc -= cp1.cusp[1];
for (i = 1; i <= cSign; i++)
xhouse1[i] = PZ(ZFromS(i));
}
for (i = 1; i <= cSign; i++)
xsign[i] = PZ(HousePlaceInX(ZFromS(i)));
for (i = 0; i <= cObj; i++)
xplanet1[i] = PZ(HousePlaceInX(cp1.obj[i]));
for (i = 0; i <= cObj; i++)
xplanet2[i] = PZ(HousePlaceInX(cp2.obj[i]));
/* Go draw the outer sign and house rings. We are drawing only the */
/* houses of one of the two charts in the relationship, however. */
DrawWheel(xsign, xhouse1, cx, cy, unitx, unity, gi.rAsc,
0.70, 0.74, 0.78, 0.82, 0.885);
/* Draw the outer ring of planets (based on the planets in the chart */
/* which the houses do not reflect - the houses belong to the inner ring */
/* below). Draw each glyph, a line from it to its actual position point */
/* in the outer ring, and then draw another line from this point to a */
/* another dot at the same position in the inner ring as well. */
for (i = 0; i <= cObj; i++)
symbol[i] = xplanet2[i];
if (us.nRel == rcTransit)
for (i = 0; i <= cObj; i++) {
ignoreT[i] = ignore[i];
ignore[i] = ignore2[i];
}
FillSymbolRing(symbol, 1.0);
if (us.nRel == rcTransit)
for (i = 0; i <= cObj; i++)
ignore[i] = ignoreT[i];
for (i = cObj; i >= 0; i--) if (FProper2(i)) {
if (gs.fLabel) {
temp = symbol[i];
DrawColor(cp2.dir[i] < 0.0 ? gi.kiGray : gi.kiOn);
DrawDash(cx+POINT1(unitx, 0.58, PX(xplanet2[i])),
cy+POINT1(unity, 0.58, PY(xplanet2[i])),
cx+POINT2(unitx, 0.61, PX(temp)),
cy+POINT2(unity, 0.61, PY(temp)),
(cp2.dir[i] < 0.0 ? 1 : 0) - gs.fColor);
DrawObject(i, cx+POINT1(unitx, 0.65, PX(temp)),
cy+POINT1(unity, 0.65, PY(temp)));
}
DrawColor(kObjB[i]);
DrawPoint(cx+POINT1(unitx, 0.56, PX(xplanet2[i])),
cy+POINT1(unity, 0.56, PY(xplanet2[i])));
DrawPoint(cx+POINT1(unitx, 0.43, PX(xplanet2[i])),
cy+POINT1(unity, 0.43, PY(xplanet2[i])));
DrawColor(cp2.dir[i] < 0.0 ? gi.kiGray : gi.kiOn);
DrawDash(cx+POINT1(unitx, 0.45, PX(xplanet2[i])),
cy+POINT1(unity, 0.45, PY(xplanet2[i])),
cx+POINT2(unitx, 0.54, PX(xplanet2[i])),
cy+POINT2(unity, 0.54, PY(xplanet2[i])), 2-gs.fColor);
}
/* Now draw the inner ring of planets. If it weren't for the outer ring, */
/* this would be just like the standard non-relationship wheel chart with */
/* only one set of planets. Again, draw glyph, and a line to true point. */
for (i = 0; i <= cObj; i++)
symbol[i] = xplanet1[i];
FillSymbolRing(symbol, 1.1);
DrawSymbolRing(symbol, xplanet1, cp1.dir, cx, cy, unitx, unity,
0.43, 0.45, 0.48, 0.52);
/* Draw lines connecting planets between the two charts that have aspects. */
if (!gs.fAlt) { /* Don't draw aspects in bonus mode. */
if (!FCreateGridRelation(fFalse))
return;
for (j = cObj; j >= 0; j--)
for (i = cObj; i >= 0; i--)
if (grid->n[i][j] && FProper2(i) && FProper(j)) {
DrawColor(kAspB[grid->n[i][j]]);
DrawDash(cx+POINT1(unitx, 0.41, PX(xplanet1[j])),
cy+POINT1(unity, 0.41, PY(xplanet1[j])),
cx+POINT1(unitx, 0.41, PX(xplanet2[i])),
cy+POINT1(unity, 0.41, PY(xplanet2[i])),
abs(grid->v[i][j]/(60*60*2)));
}
}
/* Go draw sidebar with chart information and positions if need be. */
if (us.nRel == rcTransit) {
ciT = ciMain;
ciMain = ciTwin;
}
DrawInfo();
if (us.nRel == rcTransit)
ciMain = ciT;
}
/* Draw a tri-wheel chart or quad-wheel chart, where we have three or four */
/* rings, among three or four sets of data we're comparing. This chart is */
/* obtained when the -r3 or -r4 switch is combined with the -X switch. */
void XChartWheelThreeFour()
{
real xsign[cSign+1], xhouse1[cSign+1], xplanet1[objMax], xplanet2[objMax],
symbol[objMax];
int cx, cy, i, fQuad;
real unitx, unity, base;
CP cpT;
/* Set up variables and temporarily automatically decrease the horizontal */
/* chart size to leave room for the sidebar if that mode is in effect. */
if (gs.fText && !us.fVelocity)
gs.xWin -= xSideT;
cx = gs.xWin/2 - 1; cy = gs.yWin/2 - 1;
unitx = (real)cx; unity = (real)cy;
gi.rAsc = gs.objLeft ? cp1.obj[abs(gs.objLeft)-1] +
rDegQuad*(gs.objLeft < 0) : cp1.cusp[1];
if (us.fVedic)
gi.rAsc = gs.objLeft ? (gs.objLeft < 0 ? 120.0 : -60.0)-gi.rAsc : 0.0;
fQuad = (us.nRel == rcQuadWheel);
base = (fQuad ? 0.22 : 0.35);
/* Fill out arrays with the degrees of the cusps and sign glyphs, and the */
/* positions of the outer two rings. */
if (gi.nMode == gWheel) {
for (i = 1; i <= cSign; i++)
xhouse1[i] = PZ(cp1.cusp[i]);
} else {
gi.rAsc -= cp1.cusp[1];
for (i = 1; i <= cSign; i++)
xhouse1[i] = PZ(ZFromS(i));
}
for (i = 1; i <= cSign; i++)
xsign[i] = PZ(HousePlaceInX(ZFromS(i)));
for (i = 0; i <= cObj; i++)
xplanet1[i] = PZ(HousePlaceInX(cp1.obj[i]));
for (i = 0; i <= cObj; i++)
xplanet2[i] = PZ(HousePlaceInX(cp2.obj[i]));
/* Go draw the outer sign and house rings. We are drawing the houses */
/* of only the outermost ring of the wheel, however. */
DrawWheel(xsign, xhouse1, cx, cy, unitx, unity, gi.rAsc,
0.745, 0.78, 0.815, 0.84, 0.895);
/* Draw the outer ring of planets (i.e. the one the house cusps reflect). */
/* Draw each glyph, a line from it to its actual position point in the */
/* outer ring, and then draw another line from this point to a another */
/* dot at the same position on the innermost ring as well. */
for (i = 0; i <= cObj; i++)
symbol[i] = xplanet1[i];
FillSymbolRing(symbol, 0.9);
DrawSymbolRing(symbol, xplanet1, ret, cx, cy, unitx, unity,
0.61, 0.63, 0.66, 0.70);
for (i = cObj; i >= 0; i--) if (FProper(i)) {
DrawColor(kObjB[i]);
DrawPoint(cx+POINT1(unitx, base, PX(xplanet1[i])),
cy+POINT1(unity, base, PY(xplanet1[i])));
if (gs.fAlt) {
DrawColor(ret[i] < 0.0 ? gi.kiGray : gi.kiOn);
DrawDash(cx+POINT1(unitx, base+0.02, PX(xplanet1[i])),
cy+POINT1(unity, base+0.02, PY(xplanet1[i])),
cx+POINT2(unitx, 0.59, PX(xplanet1[i])),
cy+POINT2(unity, 0.59, PY(xplanet1[i])), 3+fQuad-gs.fColor);
}
}
/* Now draw the second to outermost ring of planets. Again, draw each */
/* glyph, a line to its true point, and a line to the innermost ring. */
for (i = 0; i <= cObj; i++)
symbol[i] = xplanet2[i];
FillSymbolRing(symbol, 1.1);
DrawSymbolRing(symbol, xplanet2, cp2.dir, cx, cy, unitx, unity,
0.48, 0.50, 0.53, 0.57);
for (i = cObj; i >= 0; i--) if (FProper(i)) {
DrawColor(kObjB[i]);
DrawPoint(cx+POINT1(unitx, base, PX(xplanet2[i])),
cy+POINT1(unity, base, PY(xplanet2[i])));
if (gs.fAlt) {
DrawColor(cp2.dir[i] < 0.0 ? gi.kiGray : gi.kiOn);
DrawDash(cx+POINT1(unitx, base+0.02, PX(xplanet2[i])),
cy+POINT1(unity, base+0.02, PY(xplanet2[i])),
cx+POINT2(unitx, 0.46, PX(xplanet2[i])),
cy+POINT2(unity, 0.46, PY(xplanet2[i])), 2+fQuad-gs.fColor);
}
}
/* The third ring (either the innermost or second to innermost) is next. */
/* Cast the chart on the fly, and draw the glyphs and lines to true point. */
ciCore = ciThre;
cpT = cp0;
CastChart(fTrue);
for (i = 0; i <= cObj; i++)
xplanet1[i] = PZ(HousePlaceInX(planet[i]));
cp0 = cpT;
for (i = 0; i <= cObj; i++)
symbol[i] = xplanet1[i];
FillSymbolRing(symbol, 1.4);
DrawSymbolRing(symbol, xplanet1, ret, cx, cy, unitx, unity,
0.35, 0.37, 0.40, 0.44);
if (fQuad) {
/* If a fourth ring is being done, first finish the third one by */
/* drawing lines from the true positions to the inner ring. */
for (i = cObj; i >= 0; i--) if (FProper(i)) {
DrawColor(kObjB[i]);
DrawPoint(cx+POINT1(unitx, base, PX(xplanet1[i])),
cy+POINT1(unity, base, PY(xplanet1[i])));
if (gs.fAlt) {
DrawColor(ret[i] < 0.0 ? gi.kiGray : gi.kiOn);
DrawDash(cx+POINT1(unitx, base+0.02, PX(xplanet1[i])),
cy+POINT1(unity, base+0.02, PY(xplanet1[i])),
cx+POINT2(unitx, 0.33, PX(xplanet1[i])),
cy+POINT2(unity, 0.33, PY(xplanet1[i])), 2-gs.fColor);
}
}
/* If the fourth (innermost) ring is being done, cast the chart on the */
/* fly, and draw the glyphs and lines to the true positions. */
ciCore = ciFour;
cpT = cp0;
CastChart(fTrue);
for (i = 0; i <= cObj; i++)
xplanet2[i] = PZ(HousePlaceInX(planet[i]));
cp0 = cpT;
for (i = 0; i <= cObj; i++)
symbol[i] = xplanet2[i];
FillSymbolRing(symbol, 1.8);
DrawSymbolRing(symbol, xplanet2, ret, cx, cy, unitx, unity,
0.22, 0.24, 0.27, 0.31);
}
/* Go draw sidebar with chart information and positions if need be. */
ciCore = ciMain;
DrawInfo();
}
/* Draw an aspect (or midpoint) grid in the window, between the planets in */
/* two different charts, with the planets labeled at the top and side. This */
/* chart is done when the -g switch is combined with the -r0 and -X switch. */
/* Like above, the chart always has a (definable) fixed number of cells. */
void XChartGridRelation()
{
char sz[cchSzDef];
int unit, siz, x, y, i, j, k, l;
KI c;
unit = CELLSIZE*gi.nScale; siz = (gs.nGridCell+1)*unit;
i = us.fSmartCusp; us.fSmartCusp = fFalse;
if (!FCreateGridRelation(gs.fAlt != us.fGridConfig))
return;
us.fSmartCusp = i;
/* Loop through each cell in each row and column of grid. */
for (y = 0, j = -2; y <= gs.nGridCell; y++) {
do {
j++;
} while (j >= 0 && ignore[j] && j <= cObj);
DrawColor(gi.kiGray);
DrawDash(0, (y+1)*unit, siz, (y+1)*unit, !gs.fColor);
DrawDash((y+1)*unit, 0, (y+1)*unit, siz, !gs.fColor);
DrawColor(gi.kiLite);
DrawEdge(0, y*unit, unit, (y+1)*unit);
DrawEdge(y*unit, 0, (y+1)*unit, unit);
DrawEdge(y*unit, y*unit, (y+1)*unit, (y+1)*unit);
if (j <= cObj) for (x = 0, i = -2; x <= gs.nGridCell; x++) {
do {
i++;
} while (i >= 0 && ignore[i] && i <= cObj);
/* Again, we are looping through each cell in each row and column. */
if (i <= cObj) {
gi.xTurtle = x*unit+unit/2;
gi.yTurtle = y*unit+unit/2 -
(gi.nScale/gi.nScaleT > 2 ? 5*gi.nScaleT : 0);
k = i >= 0 && j >= 0 ? grid->n[i][j] : 0;
/* If current cell is on top row or left hand column, draw glyph */
/* of planet owning the particular row or column in question. */
if (y == 0 || x == 0) {
if (x+y > 0)
DrawObject(y == 0 ? i : j, gi.xTurtle, gi.yTurtle);
} else {
/* Otherwise, draw glyph of aspect in effect, or glyph of */
/* sign of midpoint, between the two planets in question. */
if (gs.fAlt == us.fGridConfig) {
if (k) {
DrawColor(c = kAspB[k]);
DrawAspect(k, gi.xTurtle, gi.yTurtle);
}
} else {
DrawColor(c = kSignB(grid->n[i][j]));
DrawSign(grid->n[i][j], gi.xTurtle, gi.yTurtle);
}
}
/* Again, when scale size is 300+, print some text in current cell: */
if (gi.nScale/gi.nScaleT > 2 && gs.fLabel) {
/* For top and left edges, print sign and degree of the planet. */
if (y == 0 || x == 0) {
if (x+y > 0) {
k = SFromZ(y == 0 ? cp2.obj[i] : cp1.obj[j]);
l = (int)((y == 0 ? cp2.obj[i] : cp1.obj[j])-ZFromS(k));
c = kSignB(k);
sprintf(sz, "%c%c%c %02d", chSig3(k), l);
/* For extreme upper left corner, print some little arrows */
/* pointing out chart1's planets and chart2's planets. */
} else {
c = gi.kiLite;
sprintf(sz, "1v 2->");
}
} else {
k = abs(grid->v[i][j]) / 60;
/* For aspect cells, print the orb in degrees and minutes. */
if (gs.fAlt == us.fGridConfig) {
if (grid->n[i][j])
sprintf(sz, "%c%d%c%02d'", k != grid->v[i][j] ?
(us.fAppSep ? 'a' : '-') : (us.fAppSep ? 's' : '+'),
k/60, chDeg2, k%60);
else
sprintf(sz, "");
/* For midpoint cells, print degree and minute. */
} else
sprintf(sz, "%2d%c%02d'", k/60, chDeg2, k%60);
}
DrawColor(c);
DrawSz(sz, x*unit+unit/2, (y+1)*unit-3*gi.nScaleT, dtBottom);
}
}
}
}
}
/* Draw a chart showing a graphical ephemeris for the given month (or year */
/* if -Ey in effect), with the date on the vertical axis and the zodiac */
/* on the horizontal, as done when the -E is combined with the -X switch. */
void XChartEphemeris()
{
real symbol[cObj*2+2], objSav[objMax];
char sz[4];
int yea, unit = 6*gi.nScale, daytot, d = 1, day, mon, monsiz,
x1, y1, x2, y2, xs, ys, m, n, u, v = 0, i, j;
yea = us.nEphemYears; /* Is this -Ey -X or just -E -X? */
if (yea) {
daytot = DayInYearHi(Yea);
day = 1; mon = 1; monsiz = 31;
} else
daytot = DayInMonth(Mon, Yea);
x1 = (yea ? 30 : 24)*gi.nScaleT; y1 = unit*2;
x2 = gs.xWin - x1; y2 = gs.yWin - y1;
xs = x2 - x1; ys = y2 - y1;
/* Display glyphs of the zodiac along the bottom axis. */
for (i = 1; i <= cSign+1; i++) {
m = x1 + NMultDiv(xs, i-1, 12);
j = i > cSign ? 1 : i;
DrawColor(kSignB(j));
DrawSign(j, m, y2 + unit);
DrawColor(gi.kiGray);
DrawDash(m, y1, m, y2, 2);
}
/* Loop and display planet movements for one day segment. */
while (d <= daytot + 1) {
n = v;
v = y1 + NMultDiv(ys, d-1, daytot);
if (!yea || day == 1) {
DrawColor(gi.kiGray);
DrawDash(x1, v, x2, v, 1); /* Marker line for day or month. */
}
if (d > 1)
for (i = 0; i <= cObj; i++)
objSav[i] = planet[i];
ciCore = ciMain;
if (yea) {
MM = mon; DD = day;
} else {
MM = Mon; DD = d;
}
CastChart(fTrue);
/* Draw planet glyphs along top of chart. */
if (d < 2) {
for (i = 0; i <= cObj; i++) {
j = !FProper(i);
symbol[i*2] = (j || us.nRel > rcDual) ? -rLarge : cp2.obj[i];
symbol[i*2+1] = (j ? -rLarge : planet[i]);
}
FillSymbolLine(symbol);
for (i = cObj*2+1; i >= 0; i--) {
j = i >> 1;
if (symbol[i] >= 0.0)
DrawObject(j, x1 + (int)((real)xs * symbol[i] / rDegMax), unit);
}
if (us.nRel <= rcDual) {
for (i = cObj; i >= 0; i--) {
if (!FProper(i))
continue;
j = x1 + (int)((real)xs * cp2.obj[i] / rDegMax);
DrawColor(kObjB[i]);
DrawDash(j, y1, j, y2, 1);
}
}
/* Draw a line segment for each object during this time section. */
} else
for (i = cObj; i >= 0; i--) {
if (!FProper(i))
continue;
m = x1 + (int)((real)xs * objSav[i] / rDegMax);
u = x1 + (int)((real)xs * planet[i] / rDegMax);
DrawColor(kObjB[i]);
DrawWrap(m, n, u, v, ret[i] > 0.0 ? -x1 : x1, x2);
}
/* Label months or days in the month along the left and right edges. */
if (d <= daytot && (!yea || day == 1)) {
if (yea) {
sprintf(sz, "%c%c%c", chMon3(mon));
i = (mon == Mon);
} else {
sprintf(sz, "%2d", d);
i = (d == Day);
}
DrawColor(i ? gi.kiOn : gi.kiLite);
DrawSz(sz, xFont *gi.nScaleT, v + (yFont-2)*gi.nScaleT,
dtLeft | dtBottom);
DrawSz(sz, x2+(xFont-1)*gi.nScaleT, v + (yFont-2)*gi.nScaleT,
dtLeft | dtBottom);
}
/* Now increment the day counter. For a month we always go up by one. */
/* For a year we go up by four or until the end of the month reached. */
if (yea) {
i = us.fSeconds ? 2 : 4;
day += i;
if (day > monsiz) {
d += i-(day-monsiz-1);
if (d <= daytot + 1) {
mon++;
monsiz = DayInMonth(mon, Yea);
day = 1;
}
} else
d += i;
} else
d++;
}
DrawColor(gi.kiLite);
DrawEdge(x1, y1, x2, y2);
ciCore = ciMain; /* Recast original chart. */
CastChart(fTrue);
}
#ifdef BIORHYTHM
/* Draw a graphic biorhythm chart on the screen, as is done when the -rb */
/* switch is combined with -X. This is technically a relationship chart in */
/* that biorhythm status is determined by a natal chart time at another */
/* later time. For the day in question, and for two weeks before and after, */
/* the Physical, Emotional, and Mental percentages are plotted. */
void XChartBiorhythm()
{
char sz[6], *c;
real jd, r, a;
int x1, x2, xs, cx, y1, y2, ys, cy, i, j, k, x, y, x0, y0;
k = xFont*6*gi.nScaleT;
x1 = k; x2 = gs.xWin-k; xs = x2-x1; cx = (x1+x2)/2;
k = CELLSIZE;
y1 = k; y2 = gs.yWin-k; ys = y2-y1; cy = (y1+y2)/2;
/* Create a dotted day/percentage grid to graph on. */
DrawColor(gi.kiGray);
DrawDash(x1, cy, x2, cy, 1);
DrawDash(cx, y1, cx, y2, 1);
for (j = -us.nBioday+1; j <= us.nBioday-1; j++) {
x = x1 + NMultDiv(xs, j+us.nBioday, us.nBioday*2);
for (k = -90; k <= 90; k += 10) {
y = y1 + NMultDiv(ys, 100+k, 200);
DrawPoint(x, y);
}
}
/* Now actually draw the three biorhythm curves. */
for (i = 1; i <= 3; i++) {
jd = RFloor(is.JD + rRound);
switch (i) {
case 1: r = brPhy; c = "PHYS"; j = eFir; break;
case 2: r = brEmo; c = "EMOT"; j = eWat; break;
case 3: r = brInt; c = "INTE"; j = eEar; break;
}
DrawColor(kElemB[j]);
for (jd -= (real)us.nBioday, j = -us.nBioday; j <= us.nBioday;
j++, jd += 1.0) {
a = RBiorhythm(jd, r);
x = x1 + NMultDiv(xs, j+us.nBioday, us.nBioday*2);
y = y1 + (int)((real)ys * (100.0-a) / 200.0);
if (j > -us.nBioday)
DrawLine(x0, y0, x, y);
else
DrawSz(c, x1/2, y+2*gi.nScaleT, dtCent);
x0 = x; y0 = y;
}
}
DrawColor(gi.kiLite);
/* Label biorhythm percentages along right vertical axis. */
for (k = -100; k <= 100; k += 10) {
sprintf(sz, "%c%3d%%", k < 0 ? '-' : '+', abs(k));
y = y1 + NMultDiv(ys, 100-k, 200);
DrawSz(sz, (x2+gs.xWin)/2, y+2*gi.nScaleT, dtCent);
}
/* Label days on top horizontal axis. */
k = Max(us.nBioday/7, 1);
for (j = -us.nBioday+k; j < us.nBioday; j += k) {
x = x1 + NMultDiv(xs, j+us.nBioday, us.nBioday*2);
sprintf(sz, "%c%d", j < 0 ? '-' : '+', abs(j));
DrawSz(sz, x, y1-2*gi.nScaleT, dtBottom);
}
DrawEdge(x1, y1, x2, y2);
}
#endif /* BIORHYTHM */
#endif /* GRAPH */
/* xcharts2.cpp */