-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_service.py
385 lines (341 loc) · 17.2 KB
/
run_service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import os
import sys
import copy
import json
import importlib
import collections
import torch
import pandas as pd
import numpy as np
from transformers import PreTrainedTokenizerBase
from flask import Flask, request, Response
from utils.data_utils import load_json_data, load_jsonl_data, norm_and_tokenize
from language.totto.totto_to_twt_utils import linearize_full_table, ADDITIONAL_SPECIAL_TOKENS
from language.tabfact.convert_to_totto import convert_df
from twt_preprocessing import build_model_inputs_with_prefix, tokenize_sentence, tokenize_meta, align_output_with_table, get_metas_list
from run_pred import parse_args, adjust_length_to_model, set_seed, build_generation_input, generate_single
from model.prefix_matching import prefix_matching
# from totto.baselines.completion.batch_completion import parse_args, prepare_completion, serve
class Config(object):
DEBUG = False
TESTING = False
CSRF_ENABLED = True
MODELS = collections.OrderedDict({
't5_twt/base': {
'module_name': "model",
'class_name': "TWTT5ForConditionalGeneration",
'model_path': "/bdmstorage/teamdrive/tasks/final/exps/tabfact_prefix_t5_base_twt_0.4_gen_loss/checkpoints/checkpoint-10000",
# 'model_path': "/bdmstorage/teamdrive/tasks/final_base/exps/totto_prefix_t5_base_twt_0.4_gen_loss/checkpoints/checkpoint-154000",
'tokenizer_name': "t5-base",
},
'bert2bert_twt/base': {
'module_name': "model.bert2bert.modeling_enc_dec_twt",
'class_name': "TWTEncoderDecoderModel",
'model_path': "/bdmstorage/teamdrive/tasks/final/exps/tabfact_prefix_bert2bert_base_twt_0.4_gen_loss/checkpoints/checkpoint-40000",
'tokenizer_name': "bert-base-uncased",
},
't5/base': {
'module_name': "transformers",
'class_name': "T5ForConditionalGeneration",
'model_path': "/bdmstorage/teamdrive/tasks/final/exps/tabfact_causal_t5_base/checkpoints/checkpoint-24000",
'tokenizer_name': "t5-base",
},
'bert2bert/base': {
'module_name': "transformers",
'class_name': "EncoderDecoderModel",
'model_path': "/bdmstorage/teamdrive/tasks/final/exps/tabfact_causal_bert2bert_base/checkpoints/checkpoint-16000",
'tokenizer_name': "bert-base-uncased",
}
})
TOKENIZERS = {
't5-base': {
"module_name": "model.transformers",
"class_name": "T5Tokenizer",
},
'bert-base-uncased': {
"module_name": "model.transformers",
"class_name": "BertTokenizer",
}
}
class ModelManager(object):
def __init__(self):
super().__init__()
self.models = collections.OrderedDict()
self.tokenizers = collections.OrderedDict()
def load_models(self, config_models, config_tokenizers):
for model_name, config_model in config_models.items():
# Load model
model_module = importlib.import_module(config_model['module_name'])
model_class = getattr(model_module, config_model['class_name'])
model = model_class.from_pretrained(config_model['model_path'])
model.to(app.device)
self.models[model_name] = model
# Load tokenizer
tokenizer_name = config_model['tokenizer_name']
if tokenizer_name not in self.tokenizers:
tokenizer_module = importlib.import_module(config_tokenizers[tokenizer_name]['module_name'])
tokenizer_class = getattr(tokenizer_module, config_tokenizers[tokenizer_name]['class_name'])
tokenizer = tokenizer_class.from_pretrained(tokenizer_name)
tokenizer.add_special_tokens({'additional_special_tokens': ADDITIONAL_SPECIAL_TOKENS})
if "bert" in tokenizer_name:
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
elif "t5" in tokenizer_name:
tokenizer.bos_token = tokenizer.pad_token
else:
pass
self.tokenizers[tokenizer_name] = tokenizer
def get_model(self, model_name):
"""Get a model object by qualified name."""
if model_name in self.models:
return self.models[model_name]
return None
def get_tokenizer(self, tokenizer_name):
if tokenizer_name in self.tokenizers:
return self.tokenizers[tokenizer_name]
return None
def format_table(table_data):
headers, data = [], []
for idx, row in enumerate(table_data):
if idx == 0:
headers = [{'type': 'text', 'title': col['value'].strip(), 'width': 100} for col in row]
else:
data.append([col['value'].strip() for col in row])
return headers, data
def is_valid_sequence(prefix, generated_sequences):
for generated_sequence in generated_sequences:
if generated_sequence[:len(prefix)] != prefix:
return False
return True
def format_output(model_name, prefix, generated_sequences, use_custom=False):
custom_names = {
't5_twt/base': "ours",
't5/base': "baseline"
}
display_name = model_name
if use_custom:
display_name = custom_names[model_name]
prefix = PreTrainedTokenizerBase.clean_up_tokenization(prefix)
sentences = [{'value': f"{display_name.upper()}: {generated_sequence}", 'id': f"{generated_sequence}"} for generated_sequence in generated_sequences]
return sentences
def load_dataset():
current_dir = os.path.abspath(os.path.dirname(__file__))
dataset_path = os.path.join(current_dir, "data/dataset/final/tabfact_test.jsonl")
tables_dir = os.path.join(current_dir, "data/dataset/final/tables")
dataset_records = []
table_ids = set()
record_id = 0
for dataset_record in load_jsonl_data(dataset_path, False, False):
table_id = dataset_record['table_id']
if table_id not in table_ids:
table_json_data = load_json_data(f"{tables_dir}/{table_id}.json")
dataset_records.append({
'record_id': record_id,
'table': table_json_data,
'output_sentence': dataset_record['output_sentence'],
'prefixes': dataset_record['prefixes'],
'start_indices': dataset_record['start_indices']
})
table_ids.add(table_id)
record_id += 1
return dataset_records
def prepare_args(model_name, temperature, top_p):
args = copy.deepcopy(parse_args())
args.device = app.device
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
set_seed(args)
if "bert2bert" in model_name:
args.stop_token = "[SEP]"
args.greedy_search = False
elif "t5" in model_name:
args.stop_token = "</s>"
args.greedy_search = True
else:
pass
args.temperature = temperature
args.p = top_p
args.num_return_sequences = 1
args.length = adjust_length_to_model(20, max_sequence_length=512)
args.clean_up_tokenization_spaces = False
return args
def prepare_table(table_headers, table_data):
model_input_table = []
if table_headers and table_data:
df = pd.DataFrame(data=table_data, columns=table_headers, dtype=str)
df = df.applymap(lambda x: np.nan if (isinstance(x, str) and not x.strip()) else x)
# Last not all-nan row
first_valid_row_idx, last_valid_row_idx = df.first_valid_index(), df.last_valid_index()
df_T = df.T
first_valid_col, last_valid_col = df_T.first_valid_index(), df_T.last_valid_index()
df_active = df.loc[first_valid_row_idx:last_valid_row_idx, first_valid_col:last_valid_col]
model_input_table = convert_df(df_active)
return model_input_table
def proc_generated_sequence(prefix, generated_sequences, table_data, meta_data, tokenizer):
prefix_tokens = prefix.split(" ")
generated_sequences_processed = []
for generated_sequence in generated_sequences:
generated_basic_tokens = generated_sequence.split(" ")
_, metas_basic_tokens, _, _, _ = tokenize_meta(meta_data, tokenizer)
# Align the output sentence with the table
matched_facts, _ = align_output_with_table(table_data, metas_basic_tokens, generated_basic_tokens, tokenizer.eos_token)
generation_end_idx = len(generated_basic_tokens)
generation_start_char = generated_sequence[len(prefix)] if len(generated_sequence) > len(prefix) else None
# The generated sentence should be aligned to the table
aligned_to_table = False
if matched_facts and generation_start_char is not None:
for (fact_start_idx, matched_fact) in matched_facts.items():
fact_end_idx = fact_start_idx + len(matched_fact[0].split(" "))
if (generation_start_char != " " and fact_end_idx >= len(prefix_tokens)) or (generation_start_char == " " and fact_end_idx > len(prefix_tokens)):
if not aligned_to_table:
aligned_to_table = any(coord[0] != -1 for coord in matched_fact[1])
generation_end_idx = fact_end_idx
break
if aligned_to_table:
generated_sequences_processed.append(PreTrainedTokenizerBase.clean_up_tokenization(" ".join(generated_basic_tokens[:generation_end_idx])[len(prefix):]))
return generated_sequences_processed
def prepare_masking_func(prefix, **kwargs):
# Apply prefix mask
prefix_tokens = prefix.split(" ")
prefix_last_token = prefix_tokens[-1]
masking_func = app.masking_factory([prefix_last_token], **kwargs)
return masking_func
def prepare_model_input_with_prefix_mask(prefix, model_input, tokenizer):
model_input_with_prefix = copy.deepcopy(model_input)
prefix_tokens = prefix.split(" ")
model_prefixes = [" ".join(prefix_tokens[:-1])]
# Build completion prefix
if len(prefix_tokens) > 1:
_, _, _, prefix_input_ids, _, _ = tokenize_sentence(model_prefixes[0], tokenizer, "do_not_pad")
# Only modify prefix input ids
model_input_with_prefix['prefix_input_ids'] = prefix_input_ids
else:
# Only modify prefix input ids
model_input_with_prefix['prefix_input_ids'] = [tokenizer.bos_token_id]
return model_prefixes, model_input_with_prefix
# Init Flask app
app = Flask(__name__)
app.config['JSON_AS_ASCII'] = False
# Init device
app.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Init dataset
print("Load dataset")
app.dataset_records = load_dataset()
# Init models and tokenizers
print("Load models and tokenizers")
app.model_manager = ModelManager()
app.model_manager.load_models(Config.MODELS, Config.TOKENIZERS)
# Init masking factory
print("Load masking factory")
app.masking_factory = prefix_matching.PrefixMaskingFuncFactory(app.model_manager.get_tokenizer('t5-base'), 1, 'vocab')
@app.route('/api/get_example', methods=['GET'])
def get_example():
try:
record_id = int(request.args.get('record_id', 0))
if record_id >= len(app.dataset_records):
record_id = 0
except (ValueError, TypeError):
record_id = 0
dataset_record = app.dataset_records[record_id]
table_headers, table_data = format_table(dataset_record['table']['data'])
dataset_record['table_headers'] = table_headers
dataset_record['table_data'] = table_data
dataset_record['meta_data'] = os.linesep.join(get_metas_list(dataset_record['table']['meta'])) if get_metas_list(dataset_record['table']['meta']) else ""
return Response(json.dumps(dataset_record), status=200, mimetype='application/json')
@app.route('/api/do_complete', methods=['POST'])
def do_complete():
try:
model_size = str(request.get_json().get('model_size', "t5_twt/base"))
except (ValueError, TypeError):
model_size = "t5_twt/base"
try:
temperature = float(request.get_json().get('temperature', 1.0))
except (ValueError, TypeError):
temperature = 1.0
try:
top_p = float(request.get_json().get('top_p', 0.9))
except (ValueError, TypeError):
top_p = 0.9
try:
# User input context
context = str(request.get_json().get('context', ""))
except (ValueError, TypeError):
context = ""
# Table data
meta_data = request.get_json().get('meta_data', "")
table_headers = request.get_json().get('table_headers', "")
table_data = request.get_json().get('table_data', {})
# Prepare model and tokenizer
model_names = []
if model_size == "all":
model_names = list(Config.MODELS.keys())
elif model_size == "custom":
model_names = ["t5_twt/base", "t5/base"]
else:
model_names.append(model_size)
json_data = {}
# Build custom input
if context:
model_input_table = prepare_table(table_headers.split(","), table_data)
if model_input_table:
_, context_tokens, _ = norm_and_tokenize(context)
context_tokenized = " ".join(context_tokens)
metas_tokenized = [" ".join(norm_and_tokenize(meta)[1]) for meta in meta_data.strip().split(os.linesep)[:2]] if meta_data.strip() else []
json_data['table'] = {'meta': metas_tokenized, 'data': model_input_table}
json_data['output_sentence'] = context_tokenized
json_data['prefixes'] = [context_tokenized]
json_data['start_indices'] = [len(context_tokens)]
output_sequences = []
for model_name in model_names:
model = app.model_manager.get_model(model_name)
tokenizer = app.model_manager.get_tokenizer(Config.MODELS[model_name]['tokenizer_name'])
masking_func = None
if json_data:
model_inputs, generation_inputs = None, None
model_prefixes = json_data['prefixes']
if "twt" in model_name:
model_inputs = build_model_inputs_with_prefix(json_data, tokenizer)
if model_inputs:
model_input = model_inputs[0]
if "t5" in model_name:
if not context.endswith(" "):
# Apply prefix mask
masking_func = prepare_masking_func(json_data['prefixes'][0])
# Prepare prefix model inputs
model_prefixes, model_input = prepare_model_input_with_prefix_mask(json_data['prefixes'][0], model_input, tokenizer)
generation_inputs = build_generation_input(model_input, tokenizer, False)
else:
full_table_metadata_str = linearize_full_table(table=json_data['table']['data'], metas=get_metas_list(json_data['table']['meta']))
generation_inputs = tokenizer([full_table_metadata_str], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
if generation_inputs:
model_prefix = model_prefixes[0]
# We use the original json data to acquire the original prefix
prefix = json_data['prefixes'][0]
args = prepare_args(model_name, temperature, top_p)
args.masking_func = masking_func
generated_sequences = generate_single(model, tokenizer, args, model_prefix, generation_inputs)
# Add fall back (4 times) for prefix masking
if args.masking_func is not None:
if not is_valid_sequence(prefix, generated_sequences):
# Remove space marker from the prefix mask
args.masking_func = prepare_masking_func(json_data['prefixes'][0], remove_space_marker=True)
generated_sequences = generate_single(model, tokenizer, args, model_prefix, generation_inputs)
if not is_valid_sequence(prefix, generated_sequences):
# Force the prefix as the next token
args.masking_func = prepare_masking_func(json_data['prefixes'][0], force_prefix=True)
generated_sequences = generate_single(model, tokenizer, args, model_prefix, generation_inputs)
if not is_valid_sequence(prefix, generated_sequences):
# Do not use the prefix mask
args.masking_func = None
generation_inputs = build_generation_input(model_inputs[0], tokenizer, False)
generated_sequences = generate_single(model, tokenizer, args, prefix, generation_inputs)
if not is_valid_sequence(prefix, generated_sequences):
# Return empty result
generated_sequences = []
generated_sequences_proc = proc_generated_sequence(prefix, generated_sequences, json_data['table']['data'], get_metas_list(json_data['table']['meta']), tokenizer)
model_output_sequences = format_output(model_name, f"{prefix} " if context.endswith(" ") else prefix, generated_sequences_proc, model_size == "custom")
if model_output_sequences:
output_sequences.extend(model_output_sequences)
return Response(json.dumps({'sentences': output_sequences}), status=200, mimetype='application/json')
if __name__ == '__main__':
port = os.getenv('PORT', 5001)
app.run('0.0.0.0', port=port)