From 71f54d49ce4da246b794f6df48435420527ac4b7 Mon Sep 17 00:00:00 2001 From: mac <18800151059@163.com> Date: Thu, 23 Feb 2023 00:22:32 +0800 Subject: [PATCH] add instruction tuning --- README.md | 3 +- paper_list/instruction-tuning.md | 30 +++++++++++++++++++ .../{prompt_tuning.md => prompt_learning.md} | 3 +- 3 files changed, 34 insertions(+), 2 deletions(-) create mode 100644 paper_list/instruction-tuning.md rename paper_list/{prompt_tuning.md => prompt_learning.md} (90%) diff --git a/README.md b/README.md index b237c48..dee3b2b 100644 --- a/README.md +++ b/README.md @@ -64,7 +64,8 @@ If you're interested in the field of LLM, you may find the above list of milesto - [Chain-of-Thought](paper_list/chain_of_thougt.md) - [In-Context-Learning](paper_list/in_context_learning.md) - [RLHF](paper_list/RLHF.md) -- [Prompt-Tuning](paper_list/prompt_tuning.md) +- [Prompt-Learning](paper_list/prompt_learning.md) +- [Instruction-Tuning](paper_list/instruction-tuning.md) - [MOE](paper_list/moe.md) - [Code-Pretraining](paper_list/code_pretraining.md) - [LLM-Evaluation](paper_list/protein_pretraining.md) diff --git a/paper_list/instruction-tuning.md b/paper_list/instruction-tuning.md new file mode 100644 index 0000000..186fcc7 --- /dev/null +++ b/paper_list/instruction-tuning.md @@ -0,0 +1,30 @@ +# Instruction-Tuning + +## Papers + +### 2021 + +- **Cross-task generalization via natural language crowdsourcing instructions.** (2021-04) Swaroop Mishra et al. [paper](https://arxiv.org/abs/2104.08773) +- **Adapting language models for zero-shot learning by meta-tuning on dataset and prompt collections** (2021-04) Ruiqi Zhong et al. [paper](https://aclanthology.org/2021.findings-emnlp.244/) +- **Crossfit: A few-shot learning challenge for cross-task general- ization in NLP** (2021-04) QinYuan Ye et al. [paper](https://arxiv.org/abs/2104.08835) + +- **Finetuned language models are zero-shot learners** (2021-09) Jason Wei et al. [paper](https://openreview.net/forum?id=gEZrGCozdqR) + + > FLAN + +- **Multitask prompted training enables zero-shot task generalization** (2021-10) Victor Sanh et al. [paper](https://openreview.net/forum?id=9Vrb9D0WI4) + +- **MetaICL: Learning to learn in context** (2021-10) Sewon Min et al. [paper](https://arxiv.org/abs/2110.15943#:~:text=We%20introduce%20MetaICL%20%28Meta-training%20for%20In-Context%20Learning%29%2C%20a,learning%20on%20a%20large%20set%20of%20training%20tasks.) + +### 2022 + +- **Training language models to follow instructions with human feedback.** (2022-03) Long Ouyang et al. [paper](https://arxiv.org/abs/2203.02155) + +- **Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks** (2022-04) Yizhong Wang et al. [paper](https://arxiv.org/abs/2204.07705) + +- **Scaling Instruction-Finetuned Language Models** (20220-10) Hyung Won Chung et al. [paper](https://arxiv.org/pdf/2210.11416.pdf) + + > Flan-T5/PaLM + +## Useful Resources + diff --git a/paper_list/prompt_tuning.md b/paper_list/prompt_learning.md similarity index 90% rename from paper_list/prompt_tuning.md rename to paper_list/prompt_learning.md index 29d3d6f..2c0f545 100644 --- a/paper_list/prompt_tuning.md +++ b/paper_list/prompt_learning.md @@ -1,6 +1,7 @@ -# Prompt Tuning +# Prompt Learning ## Papers - **Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing** (2021-07) Pengfei Liu et al. [paper](https://arxiv.org/abs/2107.13586) > A Systematic Survey + ## Useful Resources