Skip to content

Latest commit

 

History

History
139 lines (101 loc) · 4.88 KB

boards.md

File metadata and controls

139 lines (101 loc) · 4.88 KB
title layout
Supported Hardware
page

Adafruit HUZZAH ESP8266 (ESP-12)

TODO: add notes

NodeMCU 0.9

Pin mapping

Pin numbers written on the board itself do not correspond to ESP8266 GPIO pin numbers. Constants are defined to make using this board easier:

static const uint8_t D0   = 16;
static const uint8_t D1   = 5;
static const uint8_t D2   = 4;
static const uint8_t D3   = 0;
static const uint8_t D4   = 2;
static const uint8_t D5   = 14;
static const uint8_t D6   = 12;
static const uint8_t D7   = 13;
static const uint8_t D8   = 15;
static const uint8_t D9   = 3;
static const uint8_t D10  = 1;

If you want to use NodeMCU pin 5, use D5 for pin number, and it will be translated to 'real' GPIO pin 14.

NodeMCU 1.0

TODO: add notes

Olimex MOD-WIFI-ESP8266

TODO: add notes

SweetPea ESP-210

TODO: add notes

Generic ESP8266 modules

These modules come in different form factors and pinouts. See the page at ESP8266 community wiki for more info: ESP8266 Module Family.

Usually these modules have no bootstapping resistors on board, insufficient decoupling capacitors, no voltage regulator, no reset circuit, and no USB-serial adapter. This makes using them somewhat tricky, compared to development boards which add these features.

In order to use these modules, make sure to observe the following:

  • Provide sufficient power to the module. For stable use of the ESP8266 a power supply with 3.3V and >= 250mA is required. Using the power available from USB to Serial adapter is not recommended, these adapters typically do not supply enough current to run ESP8266 reliably in every situation. An external supply or regulator along with filtering capacitors is preferred.

  • Connect bootstapping resistors to GPIO0, GPIO2, GPIO15 according to the schematics below.

  • Put ESP8266 into bootloader mode before uploading code.

Serial Adapter

There are many different USB to Serial adapters / boards.

  • Note
  • for full upload management you need RTS and DTR
  • the chip need to have 3.3V TTL (5V may damage the chip)
  • not all board have all pins of the ICs as breakout (check before order)
  • CTS and DSR are not useful for upload (they are Inputs)
  • Working ICs
  • FT232RL
  • CP2102
  • CH340G
  • maybe others (drop a comment)

Minimal Hardware Setup for Bootloading and Usage

ESPxx Hardware

PIN Resistor Serial Adapter
VCC VCC (3.3V)
GND GND
TX or GPIO2* RX
RX TX
GPIO0 PullUp DTR
Reset* PullUp RTS
GPIO15* PullDown
CH_PD PullUp
  • Note
  • GPIO15 is also named MTDO
  • Reset is also named RSBT or REST (adding PullUp improves the stability of the Module)
  • GPIO2 is alternative TX for the boot loader mode
  • Directly connecting a pin to VCC or GND is not a substitute for a PullUp or PullDown resistor, doing this can break upload management and the serial console, instability has also been noted in some cases.

ESP to Serial

ESP to Serial

Minimal Hardware Setup for Bootloading only

ESPxx Hardware

PIN Resistor Serial Adapter
VCC VCC (3.3V)
GND GND
TX or GPIO2 RX
RX TX
GPIO0 GND
Reset RTS*
GPIO15 PullDown
CH_PD PullUp
  • Note
    • if no RTS is used a manual power toggle is needed

Minimal Hardware Setup for Running only

ESPxx Hardware

PIN Resistor Power supply
VCC VCC (3.3V)
GND GND
GPIO0 PullUp
GPIO15 PullDown
CH_PD PullUp

Minimal

ESP min

Improved Stability

ESP improved stability