forked from lavanet/lava
-
Notifications
You must be signed in to change notification settings - Fork 0
/
VRF.txt
2408 lines (1548 loc) · 83 KB
/
VRF.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
[Search] [txt|xml|pdfized|bibtex] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]
Versions: (draft-goldbe-vrf) 00 01 02 03 04 05
06 07 08 09 10 11
CFRG S. Goldberg
Internet-Draft L. Reyzin
Intended status: Standards Track Boston University
Expires: August 14, 2020 D. Papadopoulos
Hong Kong University of Science and Techology
J. Vcelak
NS1
February 11, 2020
Verifiable Random Functions (VRFs)
draft-irtf-cfrg-vrf-06
Abstract
A Verifiable Random Function (VRF) is the public-key version of a
keyed cryptographic hash. Only the holder of the private key can
compute the hash, but anyone with public key can verify the
correctness of the hash. VRFs are useful for preventing enumeration
of hash-based data structures. This document specifies several VRF
constructions that are secure in the cryptographic random oracle
model. One VRF uses RSA and the other VRF uses Eliptic Curves (EC).
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on August 14, 2020.
Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
Goldberg, et al. Expires August 14, 2020 [Page 1]
Internet-Draft VRF February 2020
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Rationale . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Requirements . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3
2. VRF Algorithms . . . . . . . . . . . . . . . . . . . . . . . 4
3. VRF Security Properties . . . . . . . . . . . . . . . . . . . 5
3.1. Full Uniqueness or Trusted Uniqueness . . . . . . . . . . 5
3.2. Full Collison Resistance or Trusted Collision Resistance 5
3.3. Full Pseudorandomness or Selective Pseudorandomness . . . 5
3.4. A random-oracle-like unpredictability property . . . . . 6
4. RSA Full Domain Hash VRF (RSA-FDH-VRF) . . . . . . . . . . . 7
4.1. RSA-FDH-VRF Proving . . . . . . . . . . . . . . . . . . . 8
4.2. RSA-FDH-VRF Proof To Hash . . . . . . . . . . . . . . . . 8
4.3. RSA-FDH-VRF Verifying . . . . . . . . . . . . . . . . . . 9
5. Elliptic Curve VRF (ECVRF) . . . . . . . . . . . . . . . . . 10
5.1. ECVRF Proving . . . . . . . . . . . . . . . . . . . . . . 12
5.2. ECVRF Proof To Hash . . . . . . . . . . . . . . . . . . . 13
5.3. ECVRF Verifying . . . . . . . . . . . . . . . . . . . . . 13
5.4. ECVRF Auxiliary Functions . . . . . . . . . . . . . . . . 14
5.4.1. ECVRF Hash To Curve . . . . . . . . . . . . . . . . . 14
5.4.2. ECVRF Nonce Generation . . . . . . . . . . . . . . . 21
5.4.3. ECVRF Hash Points . . . . . . . . . . . . . . . . . . 22
5.4.4. ECVRF Decode Proof . . . . . . . . . . . . . . . . . 23
5.5. ECVRF Ciphersuites . . . . . . . . . . . . . . . . . . . 23
5.6. When the ECVRF Keys are Untrusted . . . . . . . . . . . . 26
5.6.1. ECVRF Validate Key . . . . . . . . . . . . . . . . . 26
6. Implementation Status . . . . . . . . . . . . . . . . . . . . 28
7. Security Considerations . . . . . . . . . . . . . . . . . . . 29
7.1. Key Generation . . . . . . . . . . . . . . . . . . . . . 29
7.1.1. Uniqueness and collision resistance with untrusted
keys . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2. Pseudorandomness with untrusted keys . . . . . . . . 30
7.2. Selective vs Full Pseudorandomness . . . . . . . . . . . 30
7.3. Proper pseudorandom nonce for ECVRF . . . . . . . . . . . 30
7.4. Side-channel attacks . . . . . . . . . . . . . . . . . . 31
7.5. Proofs Provide No Secrecy for VRF Input . . . . . . . . . 31
7.6. Prehashing . . . . . . . . . . . . . . . . . . . . . . . 31
7.7. Hash function domain separation and future-proofing . . . 32
8. Change Log . . . . . . . . . . . . . . . . . . . . . . . . . 33
Goldberg, et al. Expires August 14, 2020 [Page 2]
Internet-Draft VRF February 2020
9. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 34
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.1. Normative References . . . . . . . . . . . . . . . . . . 34
10.2. Informative References . . . . . . . . . . . . . . . . . 35
Appendix A. Test Vectors for the ECVRFs . . . . . . . . . . . . 37
A.1. ECVRF-P256-SHA256-TAI . . . . . . . . . . . . . . . . . . 37
A.2. ECVRF-P256-SHA256-SWU . . . . . . . . . . . . . . . . . . 38
A.3. ECVRF-EDWARDS25519-SHA512-TAI . . . . . . . . . . . . . . 40
A.4. ECVRF-EDWARDS25519-SHA512-Elligator2 . . . . . . . . . . 41
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 43
1. Introduction
1.1. Rationale
A Verifiable Random Function (VRF) [MRV99] is the public-key version
of a keyed cryptographic hash. Only the holder of the private VRF
key can compute the hash, but anyone with corresponding public key
can verify the correctness of the hash.
A key application of the VRF is to provide privacy against offline
enumeration (e.g. dictionary attacks) on data stored in a hash-based
data structure. In this application, a Prover holds the VRF private
key and uses the VRF hashing to construct a hash-based data structure
on the input data. Due to the nature of the VRF, only the Prover can
answer queries about whether or not some data is stored in the data
structure. Anyone who knows the public VRF key can verify that the
Prover has answered the queries correctly. However no offline
inferences (i.e. inferences without querying the Prover) can be made
about the data stored in the data strucuture.
1.2. Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
1.3. Terminology
The following terminology is used through this document:
SK: The private key for the VRF.
PK: The public key for the VRF.
alpha or alpha_string: The input to be hashed by the VRF.
beta or beta_string: The VRF hash output.
Goldberg, et al. Expires August 14, 2020 [Page 3]
Internet-Draft VRF February 2020
pi or pi_string: The VRF proof.
Prover: The Prover holds the private VRF key SK and public VRF key
PK.
Verifier: The Verifier holds the public VRF key PK.
2. VRF Algorithms
A VRF comes with a key generation algorithm that generates a public
VRF key PK and private VRF key SK.
The prover hashes an input alpha using the private VRF key SK to
obtain a VRF hash output beta
beta = VRF_hash(SK, alpha)
The VRF_hash algorithm is deterministic, in the sense that it always
produces the same output beta given a pair of inputs (SK, alpha).
The prover also uses the private key SK to construct a proof pi that
beta is the correct hash output
pi = VRF_prove(SK, alpha)
The VRFs defined in this document allow anyone to deterministically
obtain the VRF hash output beta directly from the proof value pi as
beta = VRF_proof_to_hash(pi)
Notice that this means that
VRF_hash(SK, alpha) = VRF_proof_to_hash(VRF_prove(SK, alpha))
and thus this document will specify VRF_prove and VRF_proof_to_hash
rather than VRF_hash.
The proof pi allows a Verifier holding the public key PK to verify
that beta is the correct VRF hash of input alpha under key PK. Thus,
the VRF also comes with an algorithm
VRF_verify(PK, alpha, pi)
that outputs (VALID, beta = VRF_proof_to_hash(pi)) if pi is valid,
and INVALID otherwise.
Goldberg, et al. Expires August 14, 2020 [Page 4]
Internet-Draft VRF February 2020
3. VRF Security Properties
VRFs are designed to ensure the following security properties.
3.1. Full Uniqueness or Trusted Uniqueness
Uniqueness means that, for any fixed public VRF key and for any input
alpha, there is a unique VRF output beta that can be proved to be
valid. Uniqueness must hold even for an adversarial Prover that
knows the VRF private key SK.
More precisely, "full uniqueness" states that a computationally-
bounded adversary cannot choose a VRF public key PK, a VRF input
alpha, and two proofs pi1 and pi2 such that VRF_verify(PK, alpha,
pi1) outputs (VALID, beta1), VRF_verify(PK, alpha, pi2) outputs
(VALID, beta2), and beta1 is not equal to beta2.
A slightly weaker security property called "trusted uniqueness"
sufficies for many applications. Trusted uniqueness is the same as
full uniqueness, but it must hold only if the VRF keys PK and SK were
generated in a trustworthy manner. In other words, uniqueness might
not hold if keys were generated in an invalid manner or with bad
randomness.
3.2. Full Collison Resistance or Trusted Collision Resistance
Like any cryprographic hash function, VRFs need to be collision
resistant. Collison resistance must hold even for an adversarial
Prover that knows the VRF private key SK.
More precisely, "full collision resistance" states that it should be
computationally infeasible for an adversary to find two distinct VRF
inputs alpha1 and alpha2 that have the same VRF hash beta, even if
that adversary knows the private VRF key SK.
For most applications, a slightly weaker security property called
"trusted collision resistance" suffices. Trusted collision
resistance is the same as collision resistance, but it holds only if
PK and SK were generated in a trustworthy manner.
3.3. Full Pseudorandomness or Selective Pseudorandomness
Pseudorandomness ensures that when an adversarial Verifier sees a VRF
hash output beta without its corresponding VRF proof pi, then beta is
indistinguishable from a random value.
More precisely, suppose the public and private VRF keys (PK, SK) were
generated in a trustworthy manner. Pseudorandomness ensures that the
Goldberg, et al. Expires August 14, 2020 [Page 5]
Internet-Draft VRF February 2020
VRF hash output beta (without its corresponding VRF proof pi) on any
adversarially-chosen "target" VRF input alpha looks indistinguishable
from random for any computationally bounded adversary who does not
know the private VRF key SK. This holds even if the adversary also
gets to choose other VRF inputs alpha' and observe their
corresponding VRF hash outputs beta' and proofs pi'.
With "full pseudorandomness", the adversary is allowed to choose the
"target" VRF input alpha at any time, even after it observes VRF
outputs beta' and proofs pi' on a variety of chosen inputs alpha'.
"Selective pseudorandomness" is a weaker security property which
suffices in many applications. Here, the adversary must choose the
target VRF input alpha independently of the public VRF key PK, and
before it observes VRF outputs beta' and proofs pi' on inputs alpha'
of its choice.
It is important to remember that the VRF output beta does not look
random to the Prover, or to any other party that knows the private
VRF key SK! Such a party can easily distinguish beta from a random
value by comparing beta to the result of VRF_hash(SK, alpha).
Also, the VRF output beta does not look random to any party that
knows valid VRF proof pi corresponding to the VRF input alpha, even
if this party does not know the private VRF key SK. Such a party can
easily distinguish beta from a random value by checking whether
VRF_verify(PK, alpha, pi) returns (VALID, beta).
Also, the VRF output beta may not look random if VRF key generation
was not done in a trustworthy fashion. (For example, if VRF keys
were generated with bad randomness.)
3.4. A random-oracle-like unpredictability property
Pseudorandomness, as defined in Section 3.3, does not hold if the VRF
keys were generated adversarially. For instance, if an adversary
outputs VRF keys that are deterministically generated (or hard-coded
and publicly known), then the outputs are easily derived by anyone.
There is, however, a different type of unpredictability that is
desirable in certain VRF applications (such as [GHMVZ17] and
[KRDO17]). This property is similar to the unpredictability achieved
by an (ordinary, unkeyed) cryptographic hash function: if the input
has enough entropy (i.e., cannot be predicted), then the correct
output is indistinguishable from uniform.
Although neither formal definitions nor proofs of this property have
appeared in cryptographic literature, the VRF schemes presented in
Goldberg, et al. Expires August 14, 2020 [Page 6]
Internet-Draft VRF February 2020
this specification are believed to satisfy this property if the
public key was generated in a trustworthy manner. Additionally, the
ECVRF also satisifies this property even if the public key was not
generated in a trustworthy manner, as long as the public key
satisfies the key validation procedure in Section 5.6.
4. RSA Full Domain Hash VRF (RSA-FDH-VRF)
The RSA Full Domain Hash VRF (RSA-FDH-VRF) is a VRF that satisfies
the "trusted uniqueness", "trusted collision resistance", and "full
pseudorandomness" properties defined in Section 3. Its security
follows from the standard RSA assumption in the random oracle model.
Formal security proofs are in [PWHVNRG17].
The VRF computes the proof pi as a deterministic RSA signature on
input alpha using the RSA Full Domain Hash Algorithm [RFC8017]
parametrized with the selected hash algorithm. RSA signature
verification is used to verify the correctness of the proof. The VRF
hash output beta is simply obtained by hashing the proof pi with the
selected hash algorithm.
The key pair for RSA-FDH-VRF MUST be generated in a way that it
satisfies the conditions specified in Section 3 of [RFC8017].
In this document, the notation from [RFC8017] is used.
Parameters used:
(n, e) - RSA public key
K - RSA private key
k - length in octets of the RSA modulus n (k must be less than
2^32)
Fixed options:
Hash - cryptographic hash function
hLen - output length in octets of hash function Hash
Primitives used:
I2OSP - Conversion of a nonnegative integer to an octet string as
defined in Section 4.1 of [RFC8017]
OS2IP - Conversion of an octet string to a nonnegative integer as
defined in Section 4.2 of [RFC8017]
Goldberg, et al. Expires August 14, 2020 [Page 7]
Internet-Draft VRF February 2020
RSASP1 - RSA signature primitive as defined in Section 5.2.1 of
[RFC8017]
RSAVP1 - RSA verification primitive as defined in Section 5.2.2 of
[RFC8017]
MGF1 - Mask Generation Function based on the hash function Hash as
defined in Section B.2.1 of [RFC8017]
|| - octet string concatenation
4.1. RSA-FDH-VRF Proving
RSAFDHVRF_prove(K, alpha_string)
Input:
K - RSA private key
alpha_string - VRF hash input, an octet string
Output:
pi_string - proof, an octet string of length k
Steps:
1. one_string = 0x01 = I2OSP(1, 1), a single octet with value 1
2. EM = MGF1(one_string || I2OSP(k, 4) || I2OSP(n, k) ||
alpha_string, k - 1)
3. m = OS2IP(EM)
4. s = RSASP1(K, m)
5. pi_string = I2OSP(s, k)
6. Output pi_string
4.2. RSA-FDH-VRF Proof To Hash
RSAFDHVRF_proof_to_hash(pi_string)
Input:
pi_string - proof, an octet string of length k
Goldberg, et al. Expires August 14, 2020 [Page 8]
Internet-Draft VRF February 2020
Output:
beta_string - VRF hash output, an octet string of length hLen
Important note:
RSAFDHVRF_proof_to_hash should be run only on pi_string that is
known to have been produced by RSAFDHVRF_prove, or from within
RSAFDHVRF_verify as specified in Section 4.3.
Steps:
1. two_string = 0x02 = I2OSP(2, 1), a single octet with value 2
2. beta_string = Hash(two_string || pi_string)
3. Output beta_string
4.3. RSA-FDH-VRF Verifying
RSAFDHVRF_verify((n, e), alpha_string, pi_string)
Input:
(n, e) - RSA public key
alpha_string - VRF hash input, an octet string
pi_string - proof to be verified, an octet string of length n
Output:
("VALID", beta_string), where beta_string is the VRF hash output,
an octet string of length hLen; or
"INVALID"
Steps:
1. s = OS2IP(pi_string)
2. m = RSAVP1((n, e), s)
3. EM = I2OSP(m, k - 1)
4. one_string = 0x01 = I2OSP(1, 1), a single octet with value 1
5. EM' = MGF1(one_string || I2OSP(k, 4) || I2OSP(n, k) ||
alpha_string, k - 1)
Goldberg, et al. Expires August 14, 2020 [Page 9]
Internet-Draft VRF February 2020
6. If EM and EM' are equal, output ("VALID",
RSAFDHVRF_proof_to_hash(pi_string)); else output "INVALID".
5. Elliptic Curve VRF (ECVRF)
The Elliptic Curve Verifiable Random Function (ECVRF) is a VRF that
satisfies the trusted uniqueness, trusted collision resistance, and
full pseudorandomness properties defined in Section 3. The security
of this VRF follows from the decisional Diffie-Hellman (DDH)
assumption in the random oracle model. Formal security proofs are in
[PWHVNRG17].
To additionally satisfy "full uniqueness" and "full collision
resistance", the Verifier MUST additionally perform the validation
procedure specified in Section 5.6 upon receipt of the public VRF
key.
Fixed options (specified in Section 5.5):
F - finite field
2n - length, in octets, of a field element in F, rounded up to the
nearest even integer
E - elliptic curve (EC) defined over F
ptLen - length, in octets, of an EC point encoded as an octet
string
G - subgroup of E of large prime order
q - prime order of group G
qLen - length of q in octets, i.e., smallest integer such that
2^(8qLen)>q (note that in the typical case, qLen equals 2n or is
close to 2n)
cofactor - number of points on E divided by q
B - generator of group G
Hash - cryptographic hash function
hLen - output length in octets of Hash; must be at least 2n
suite_string - a single nonzero octet specifying the ECVRF
ciphersuite, which determines the above options
Goldberg, et al. Expires August 14, 2020 [Page 10]
Internet-Draft VRF February 2020
Notation and primitives used:
Elliptic curve operations are written in additive notation, with
P+Q denoting point addition and x*P denoting scalar multiplication
of a point P by a scalar x
x^y - a raised to the power b
x*y - a multiplied by b
|| - octet string concatenation
ECVRF_hash_to_curve - collision resistant hash of strings to an EC
point; options described in Section 5.4.1 and specified in
Section 5.5.
ECVRF_nonce_generation - derives a pseudorandom nonce from SK and
the input as part of ECVRF proving. Specified in Section 5.5
ECVRF_hash_points - collision resistant hash of EC points to an
integer. Specified in Section 5.4.3.
Type conversions:
int_to_string(a, len) - conversion of nonnegative integer a to to
octet string of length len as specified in Section 5.5.
string_to_int(a_string) - conversion of an octet string a_string
to a nonnegative integer as specified in Section 5.5.
point_to_string - conversion of EC point to an ptLen-octet string
as specified in Section 5.5
string_to_point - conversion of an ptLen-octet string to EC point
as specified in Section 5.5. string_to_point returns INVALID if
the octet string does not convert to a valid EC point.
arbitrary_string_to_point - conversion of an arbitrary octet
string to an EC point as specified in Section 5.5
Note that with certain software libraries (for big integer and
elliptic curve arithmetic), the int_to_string and point_to_string
conversions are not needed. For example, in some implementations,
EC point operations will take octet strings as inputs and produce
octet strings as outputs, without introducing a separate elliptic
curve point type.
Goldberg, et al. Expires August 14, 2020 [Page 11]
Internet-Draft VRF February 2020
Parameters used (the generation of these parameters is specified in
Section 5.5):
SK - VRF private key
x - VRF secret scalar, an integer
Note: depending on the ciphersuite used, the VRF secret scalar
may be equal to SK; else, it is derived from SK
Y = x*B - VRF public key, an EC point
5.1. ECVRF Proving
ECVRF_prove(SK, alpha_string)
Input:
SK - VRF private key
alpha_string = input alpha, an octet string
Output:
pi_string - VRF proof, octet string of length ptLen+n+qLen
Steps:
1. Use SK to derive the VRF secret scalar x and the VRF public key Y
= x*B
(this derivation depends on the ciphersuite, as per Section 5.5;
these values can be cached, for example, after key generation,
and need not be rederived each time)
2. H = ECVRF_hash_to_curve(suite_string, Y, alpha_string)
3. h_string = point_to_string(H)
4. Gamma = x*H
5. k = ECVRF_nonce_generation(SK, h_string)
6. c = ECVRF_hash_points(H, Gamma, k*B, k*H)
7. s = (k + c*x) mod q
8. pi_string = point_to_string(Gamma) || int_to_string(c, n) ||
int_to_string(s, qLen)
Goldberg, et al. Expires August 14, 2020 [Page 12]
Internet-Draft VRF February 2020
9. Output pi_string
5.2. ECVRF Proof To Hash
ECVRF_proof_to_hash(pi_string)
Input:
pi_string - VRF proof, octet string of length ptLen+n+qLen
Output:
"INVALID", or
beta_string - VRF hash output, octet string of length hLen
Important note:
ECVRF_proof_to_hash should be run only on pi_string that is known
to have been produced by ECVRF_prove, or from within ECVRF_verify
as specified in Section 5.3.
Steps:
1. D = ECVRF_decode_proof(pi_string)
2. If D is "INVALID", output "INVALID" and stop
3. (Gamma, c, s) = D
4. three_string = 0x03 = int_to_string(3, 1), a single octet with
value 3
5. beta_string = Hash(suite_string || three_string ||
point_to_string(cofactor * Gamma))
6. Output beta_string
5.3. ECVRF Verifying
ECVRF_verify(Y, pi_string, alpha_string)
Input:
Y - public key, an EC point
pi_string - VRF proof, octet string of length ptLen+n+qLen
Goldberg, et al. Expires August 14, 2020 [Page 13]
Internet-Draft VRF February 2020
alpha_string - VRF input, octet string
Output:
("VALID", beta_string), where beta_string is the VRF hash output,
octet string of length hLen; or
"INVALID"
Steps:
1. D = ECVRF_decode_proof(pi_string)
2. If D is "INVALID", output "INVALID" and stop
3. (Gamma, c, s) = D
4. H = ECVRF_hash_to_curve(suite_string, Y, alpha_string)
5. U = s*B - c*Y
6. V = s*H - c*Gamma
7. c' = ECVRF_hash_points(H, Gamma, U, V)
8. If c and c' are equal, output ("VALID",
ECVRF_proof_to_hash(pi_string)); else output "INVALID"
5.4. ECVRF Auxiliary Functions
5.4.1. ECVRF Hash To Curve
The ECVRF_hash_to_curve algorithm takes in the VRF input alpha and
converts it to H, an EC point in G. This algorithm is the only place
the VRF input alpha is used in for proving and verfying. See
Section 7.6 for further discussion.
The algorithms in this section are not compatible with each other;
the choice of algorithm is made in Section 5.5.
5.4.1.1. ECVRF_hash_to_curve_try_and_increment
The following ECVRF_hash_to_curve_try_and_increment(suite_string, Y,
alpha_string) algorithm implements ECVRF_hash_to_curve in a simple
and generic way that works for any elliptic curve.
The running time of this algorithm depends on alpha_string. For the
ciphersuites specified in Section 5.5, this algorithm is expected to
Goldberg, et al. Expires August 14, 2020 [Page 14]
Internet-Draft VRF February 2020
find a valid curve point after approximately two attempts (i.e., when
ctr=1) on average.
However, because the running time of algorithm depends on
alpha_string, this algorithm SHOULD be avoided in applications where
it is important that the VRF input alpha remain secret.
ECVRF_hash_to_try_and_increment(suite_string, Y, alpha_string)
Input:
suite_string - a single octet specifying ECVRF ciphersuite.
Y - public key, an EC point
alpha_string - value to be hashed, an octet string
Output:
H - hashed value, a finite EC point in G
Steps:
1. ctr = 0
2. PK_string = point_to_string(Y)
3. one_string = 0x01 = int_to_string(1, 1), a single octet with
value 1
4. H = "INVALID"
5. While H is "INVALID" or H is EC point at infinity:
A. ctr_string = int_to_string(ctr, 1)
B. hash_string = Hash(suite_string || one_string || PK_string ||
alpha_string || ctr_string)
C. H = arbitrary_string_to_point(hash_string)
D. If H is not "INVALID" and cofactor > 1, set H = cofactor * H
E. ctr = ctr + 1
6. Output H
Goldberg, et al. Expires August 14, 2020 [Page 15]
Internet-Draft VRF February 2020
5.4.1.2. ECVRF_hash_to_curve_elligator2_25519
The following ECVRF_hash_to_curve_elligator2_25519(suite_string, Y,
alpha_string) algorithm implements ECVRF_hash_to_curve using the
elligator2 algorithm from Section 5 of [BHKT13] (see also
[I-D.irtf-cfrg-hash-to-curve]) exclusively for the edwards25519
elliptic curve. It can be implemented with running time that is
independent of the input alpha (so-called "constant-time").
ECVRF_hash_to_curve_elligator2_25519(suite_string, Y, alpha_string)
Input:
suite_string - a single octet specifying ECVRF ciphersuite.
alpha_string - value to be hashed, an octet string
Y - public key, an EC point
Output:
H - hashed value, a finite EC point in G
Fixed options:
p = 2^255-19, the size of the finite field F, a prime, for
edwards25519 and curve25519 curves
A = 486662, Montgomery curve constant for curve25519
cofactor = 8, the cofactor for edwards25519 and curve25519 curves
Constraints on options:
output length of Hash is at least 16n (i.e., 256) bits
Steps:
1. PK_string = point_to_string(Y)
2. one_string = 0x01 = int_to_string(1, 1)
(a single octet with value 1)
3. hash_string = Hash(suite_string || one_string || PK_string ||
alpha_string )
4. r_string = hash_string[0]...hash_string[31]
Goldberg, et al. Expires August 14, 2020 [Page 16]
Internet-Draft VRF February 2020
5. oneTwentySeven_string = 0x7F = int_to_string(127, 1)
(a single octet with value 127)
6. r_string[31] = r_string[31] & oneTwentySeven_string
(this step clears the high-order bit of octet 31)
7. r = string_to_int(r_string)
8. u = - A / (1 + 2*(r^2) ) mod p
(note: the inverse of (1+2*(r^2)) modulo p is guaranteed to
exist)
9. w = u * (u^2 + A*u + 1) mod p
(this step evaluates the Montgomery equation for Curve25519)
10. Let e equal the Legendre symbol of w and p
(see note below on how to compute e)
11. If e is equal to 1 then final_u = u; else final_u = (-A - u) mod
p
(note: final_u is the Montgomery u-coordinate of the output; see
note below on how to compute it)
12. y_coordinate = (final_u - 1) / (final_u + 1) mod p
(note 1: y_coordinate is the Edwards coordinate corresponding to
final_u)
(note 2: the inverse of (final_u + 1) modulo p is guaranteed to
exist)
13. y_string = int_to_string (y_coordinate, 32)
14. H_prelim = string_to_point(y_string)
(note: string_to_point will not return INVALID by correctness of
Elligator2)
15. Set H = cofactor * H_prelim
16. Output H
In order to make this algorithm run in time that is (almost)
independent of the input alpha_string (so-called "constant-time"),
implementers should pay particular attention to Steps 10 and 11
above. These steps can be implemented using the following approach:
e = w ^ ((p-1)/2) mod p
final_u = (e*u + (e-1) * (A/2)) mod p
Goldberg, et al. Expires August 14, 2020 [Page 17]
Internet-Draft VRF February 2020
The first step will produce a value e that is either 1 or p-1 (it is
guaranteed not to be any other value, because w is guaranteed to be
nonzero). Implementers should also ensure that the second step runs
in the same amount of time regardless of e by ensuring that
arithmetic in constant time.
Alternatively, let CMOV(result_if_1, result_if_0, selector) be the
function that returns result_if_1 when selector is 1 and result_if_0
when selector is 0. If CMOV is implemented in constant time, then
steps 12 and 13 above can be implemented as follows:
e = (w^((p-1)/2))+1 mod p
b = e/2
other_u = (-A-u) mod p
final_u = CMOV(u, other_u, b)
(Note that after the first step, e is either 0 or 2, and only the
least significant byte of e is needed in the second step). CMOV can
be implemented in constant time a variety of ways; for example, by
expanding b from a single bit to an all-0 or all-1 string
(accomplished by negating b in standard two's-complement arithmetic)
and then applying bitwise XOR and AND operations as follows: other_x
XOR ((x XOR other_x) AND b)
If having this algorithm run in constant time is not important, then
there are much faster algorithms to compute the Legendre symbol
(which is the same as the Jacobi symbol because p is a prime). See,
for example, Section 12.3 of [ntb].
5.4.1.3. ECVRF_hash_to_curve_Simplified_SWU
The following ECVRF_hash_to_curve_Simplified_SWU(suite_string, Y,
alpha_string) algorithm implements ECVRF_hash_to_curve using the
simplified Shallue-Woestijne [SW06] and Ulas [Ulas07] algorithm from
Section 7 of [BCIMRT10] (see also [I-D.irtf-cfrg-hash-to-curve]). It
can be implemented with running time that is independent of the input
alpha (so-called "constant-time"). Generally, this method can be
used for any curve with prime p that is congruent to 3 modulo 4;
however, the (very unlikely) case of d=0 in step 6 below may need to
be handled differently depending on the curve equation, to ensure
that the result is a point on the curve.