Skip to content

ORM for TypeScript and JavaScript (ES7, ES6, ES5). Supports MySQL, PostgreSQL, MariaDB, SQLite, MS SQL Server, Oracle, SAP Hana, WebSQL databases. Works in NodeJS, Browser, Ionic, Cordova and Electron platforms.

License

Notifications You must be signed in to change notification settings

tran-van-truong-p/typeorm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Please support a project by simply putting a Github star. Share this library with friends on Twitter and everywhere else you can.

ORM is in active development, but main API is pretty stable. If you notice bug or have something not working please report an issue, we'll try to fix it as soon as possible. More documentation and features expected to be soon. Feel free to contribute.

Important note: if you want latest stable version install npm i [email protected]. You can find 0.0.11 version README here. If you want the latest development version simply install npm i typeorm. For the latest development release changes see changelog.

TypeORM is an Object Relational Mapper (ORM) for Node.js written in TypeScript that can be used with TypeScript or JavaScript (ES5, ES6, ES7). Its goal to always support latest JavaScript features and provide features that help you to develop any kind of applications that use database - from small applications with a few tables to large scale enterprise applications. TypeORM helps you to:

  • automatically create in the database table schemas based on your models
  • ability to transparently insert / update / delete to the database your objects
  • map your selections from tables to javascript objects and map table columns to javascript object's properties
  • create one-to-one, many-to-one, one-to-many, many-to-many relations between tables
  • and much more...

TypeORM uses the Data Mapper pattern, unlike all other JavaScript ORMs that currently exist, which means you can write loosely coupled, scalable, maintainable applications with fewer problems.

The benefit of using TypeORM for the programmer is the ability to focus on the business logic and worry about persistence only as a secondary problem.

TypeORM is highly influenced by other ORMs, such as Hibernate, Doctrine and Entity Framework.

Installation

  1. Install module:

    npm install typeorm --save

    Important note: if you want latest stable version install npm i [email protected] If you want the latest development version simply install npm i typeorm. For the latest development release changes see changelog.

  2. You need to install reflect-metadata shim:

    npm install reflect-metadata --save

    and import it somewhere in the global place of your app (for example in app.ts):

    import "reflect-metadata";

  3. You may need to install node typings:

    npm install @types/node --save

  4. Install database driver:

    • for MySQL or MariaDB

      npm install mysql --save

    • for PostgreSQL

      npm install pg --save

    • for SQLite

      npm install sqlite3 --save

    • for Microsoft SQL Server

      npm install mssql --save

    • for Oracle (experimental)

      npm install oracledb --save

    Install only one of them, depending on which database you use.

    To make the Oracle driver work, you need to follow the installation instructions from their site.

TypeScript configuration

Also make sure you are using version 2.1 or greater of the TypeScript compiler, and you have enabled the following settings in tsconfig.json:

"emitDecoratorMetadata": true,
"experimentalDecorators": true,

You'll also need to enable es6 in the lib section of compiler options, or install es6-shim from @types.

Node.js version

TypeORM was tested with Node.js version 4 and above. If you have errors during app bootstrap, try to upgrade your Node.js version to the latest version.

Usage in the browser with WebSQL (experimental)

TypeORM works in the browser and has experimental support of WebSQL. If you want to use TypeORM in the browser then you need to npm i typeorm-browser instead of typeorm. More information about it is in this page. Also take a look at this sample.

Quick start

In TypeORM, tables are created from Entities. Entity is your model decorated by an @Entity decorator. You can get entities from the database and insert/update/remove them from there. Let's say we have a model entity/Photo.ts:

export class Photo {
    id: number;
    name: string;
    description: string;
    filename: string;
    views: number;
}

Create an entity

Now let's make it entity:

import {Entity} from "typeorm";

@Entity()
export class Photo {
    id: number;
    name: string;
    description: string;
    filename: string;
    views: number;
    isPublished: boolean;
}

Adding table columns

Now we have a table, and each table consists of columns. Let's add some columns. You can make any property of your model a column by using a @Column decorator:

import {Entity, Column} from "typeorm";

@Entity()
export class Photo {

    @Column()
    id: number;

    @Column()
    name: string;

    @Column()
    description: string;

    @Column()
    filename: string;

    @Column()
    views: number;

    @Column()
    isPublished: boolean;
}

Creating a primary column

Perfect. Now the ORM will generate a photo table for us with all its properties as columns. But there is one thing left. Each entity must have a primary column. This is requirement and you can't avoid it. To make a column a primary you need to use @PrimaryColumn decorator.

import {Entity, Column, PrimaryColumn} from "typeorm";

@Entity()
export class Photo {

    @PrimaryColumn()
    id: number;

    @Column()
    name: string;

    @Column()
    description: string;

    @Column()
    filename: string;

    @Column()
    views: number;

    @Column()
    isPublished: boolean;
}

Creating an auto-increment / generated / sequence / identity column

Now, let's say you want your id column to be auto-generated (this is known as auto-increment / sequence / generated identity column). To do that you need to change your column's type to integer and set a { generated: true } in your primary column's options:

import {Entity, Column, PrimaryColumn} from "typeorm";

@Entity()
export class Photo {

    @PrimaryColumn("int", { generated: true })
    id: number;

    @Column()
    name: string;

    @Column()
    description: string;

    @Column()
    filename: string;

    @Column()
    views: number;

    @Column()
    isPublished: boolean;
}

Using the @PrimaryGeneratedColumn decorator

Now your photo's id will always be a generated, auto-increment value. Since creating a generated auto-incrementing primary column is a common task, there is a special decorator called @PrimaryGeneratedColumn to do the same. Let's use it instead:

import {Entity, Column, PrimaryGeneratedColumn} from "typeorm";

@Entity()
export class Photo {

    @PrimaryGeneratedColumn()
    id: number;

    @Column()
    name: string;

    @Column()
    description: string;

    @Column()
    filename: string;

    @Column()
    views: number;

    @Column()
    isPublished: boolean;
}

Custom column data types

Next, let's fix our data types. By default, string is mapped to a varchar(255)-like type (depending on the database type). Number is mapped to a float/double-like type (depending on the database type). We don't want all our columns to be limited varchars or excessive floats. Let's setup correct data types:

import {Entity, Column, PrimaryGeneratedColumn} from "typeorm";

@Entity()
export class Photo {

    @PrimaryGeneratedColumn()
    id: number;

    @Column({
        length: 500
    })
    name: string;

    @Column("text")
    description: string;

    @Column()
    filename: string;

    @Column("int")
    views: number;

    @Column()
    isPublished: boolean;
}

Creating a connection to the database

Now that our entity is created, let's create an app.ts file and set up our connection there:

import "reflect-metadata";
import {createConnection} from "typeorm";
import {Photo} from "./entity/Photo";

createConnection({
    type: "mysql",
    host: "localhost",
    port: 3306,
    username: "root",
    password: "admin",
    database: "test"
    entities: [
        Photo
    ],
    autoSchemaSync: true,
}).then(connection => {
    // Here you can start to work with your entities
}).catch(error => console.log(error));

We are using MySQL in this example, but you can use any other database. To use another database, simply change the type in the driver options to the database type you are using: mysql, mariadb, postgres, sqlite, mssql or oracle. Also make sure to use your own host, port, username, password and database settings.

We added our Photo entity to the list of entities for this connection. Each entity you are using in your connection must be listed here.

Setting autoSchemaSync makes sure your entities will be synced with the database, every time you run the application.

Loading all entities from the directory

Later, when we create more entities we need to add them to the entities in our configuration. This is not very convenient, so instead we can set up the whole directory, from where all entities will be connected and used in our connection:

import {createConnection} from "typeorm";

createConnection({
    type: "mysql",
    host: "localhost",
    port: 3306,
    username: "root",
    password: "admin",
    database: "test",
    entities: [
        __dirname + "/entity/*.js"
    ],
    autoSchemaSync: true,
}).then(connection => {
    // Here you can start to work with your entities
}).catch(error => console.log(error));

Running the application

Now if you run your app.ts, a connection with database will be initialized and a database table for your photos will be created.

+-------------+--------------+----------------------------+
|                         photo                           |
+-------------+--------------+----------------------------+
| id          | int(11)      | PRIMARY KEY AUTO_INCREMENT |
| name        | varchar(500) |                            |
| description | text         |                            |
| filename    | varchar(255) |                            |
| views       | int(11)      |                            |
| isPublished | boolean      |                            |
+-------------+--------------+----------------------------+

Creating and inserting a photo into the database

Now let's create a new photo to save it in the database:

import {createConnection} from "typeorm";

createConnection(/*...*/).then(connection => {

    let photo = new Photo();
    photo.name = "Me and Bears";
    photo.description = "I am near polar bears";
    photo.filename = "photo-with-bears.jpg";
    photo.views = 1;
    photo.isPublished = true;

    return connection.manager
            .save(photo)
            .then(photo => {
                console.log("Photo has been saved");
            });

}).catch(error => console.log(error));

Using async/await syntax

Let's take advantage of the latest TypeScript features and use async/await syntax instead:

import {createConnection} from "typeorm";
import {Photo} from "./entity/Photo";

createConnection(/*...*/).then(async connection => {

    let photo = new Photo();
    photo.name = "Me and Bears";
    photo.description = "I am near polar bears";
    photo.filename = "photo-with-bears.jpg";
    photo.views = 1;
    photo.isPublished = true;

    await connection.manager.save(photo);
    console.log("Photo has been saved");

}).catch(error => console.log(error));

Using Entity Manager

We just created a new photo and saved it in the database. We used EntityManager to save it. Using entity managers you can manipulate any entity in your app. Now let's load our saved entity:

import {createConnection} from "typeorm";
import {Photo} from "./entity/Photo";

createConnection(/*...*/).then(async connection => {

    /*...*/
    let savedPhotos = await connection.manager.find(Photo);
    console.log("All photos from the db: ", savedPhotos);

}).catch(error => console.log(error));

savedPhotos will be an array of Photo objects with the data loaded from the database.

Using Repositories

Now let's refactor our code and use Repository instead of EntityManager. Each entity has its own repository which handles all operations with its entity. When you deal with entities a lot, Repositories are more convenient to use than EntityManagers:

import {createConnection} from "typeorm";
import {Photo} from "./entity/Photo";

createConnection(/*...*/).then(async connection => {

    let photo = new Photo();
    photo.name = "Me and Bears";
    photo.description = "I am near polar bears";
    photo.filename = "photo-with-bears.jpg";
    photo.views = 1;
    photo.isPublished = true;

    let photoRepository = connection.getRepository(Photo);

    await photoRepository.save(photo);
    console.log("Photo has been saved");

    let savedPhotos = await photoRepository.find();
    console.log("All photos from the db: ", savedPhotos);

}).catch(error => console.log(error));

Loading photos from the database

Let's try to more load operations using the Repository:

import {createConnection} from "typeorm";
import {Photo} from "./entity/Photo";

createConnection(/*...*/).then(async connection => {

    /*...*/
    let allPhotos = await photoRepository.find();
    console.log("All photos from the db: ", allPhotos);

    let firstPhoto = await photoRepository.findOneById(1);
    console.log("First photo from the db: ", firstPhoto);

    let meAndBearsPhoto = await photoRepository.findOne({ name: "Me and Bears" });
    console.log("Me and Bears photo from the db: ", meAndBearsPhoto);

    let allViewedPhotos = await photoRepository.find({ views: 1 });
    console.log("All viewed photos: ", allViewedPhotos);

    let allPublishedPhotos = await photoRepository.find({ isPublished: true });
    console.log("All published photos: ", allPublishedPhotos);

    let [allPhotos, photosCount] = await photoRepository.findAndCount();
    console.log("All photos: ", allPhotos);
    console.log("Photos count: ", photosCount);

}).catch(error => console.log(error));

Updating a photo in the database

Now let's load a single photo from the database, update it and save it:

import {createConnection} from "typeorm";
import {Photo} from "./entity/Photo";

createConnection(/*...*/).then(async connection => {

    /*...*/
    let photoToUpdate = await photoRepository.findOneById(1);
    photoToUpdate.name = "Me, my friends and polar bears";
    await photoRepository.save(photoToUpdate);

}).catch(error => console.log(error));

Now photo with id = 1 will be updated in the database.

Removing a photo from the database

Now let's remove our photo from the database:

import {createConnection} from "typeorm";
import {Photo} from "./entity/Photo";

createConnection(/*...*/).then(async connection => {

    /*...*/
    let photoToRemove = await photoRepository.findOneById(1);
    await photoRepository.remove(photoToRemove);

}).catch(error => console.log(error));

Now photo with id = 1 will be removed from the database.

Creating a one-to-one relation

Let's create a one-to-one relation with another class. Let's create a new class in PhotoMetadata.ts. This PhotoMetadata class is supposed to contain our photo's additional meta-information:

import {Entity, Column, PrimaryGeneratedColumn, OneToOne, JoinColumn} from "typeorm";
import {Photo} from "./Photo";

@Entity()
export class PhotoMetadata {

    @PrimaryGeneratedColumn()
    id: number;

    @Column("int")
    height: number;

    @Column("int")
    width: number;

    @Column()
    orientation: string;

    @Column()
    compressed: boolean;

    @Column()
    comment: string;

    @OneToOne(type => Photo)
    @JoinColumn()
    photo: Photo;
}

Here, we are used a new decorator called @OneToOne. It allows us to create one-to-one relations between two entities. type => Photo is a function that returns the class of the entity with which we want to make our relation. We are forced to use a function that returns a class, instead of using class directly, because of the language specifics. We can also write it as a () => Photo, but we use type => Photo as convention to increase code readability. The type variable itself does not contain anything.

We also add a @JoinColumn decorator, which indicates that this side of the relationship will own the relationship. Relations can be unidirectional or bidirectional. Only one side of relational can be owner. Using this decorator is required on the owner side of the relationship.

If you run the app, you'll see a newly generated table, and it will contain a column with a foreign key for the photo relation:

+-------------+--------------+----------------------------+
|                      photometadata                      |
+-------------+--------------+----------------------------+
| id          | int(11)      | PRIMARY KEY AUTO_INCREMENT |
| height      | int(11)      |                            |
| width       | int(11)      |                            |
| comment     | varchar(255) |                            |
| compressed  | boolean      |                            |
| orientation | varchar(255) |                            |
| photo       | int(11)      | FOREIGN KEY                |
+-------------+--------------+----------------------------+

Persisting an object with a one-to-one relation

Now let's save a photo, its metadata and attach them to each other.

import {createConnection} from "typeorm";
import {Photo} from "./entity/Photo";
import {PhotoMetadata} from "./entity/PhotoMetadata";

createConnection(/*...*/).then(async connection => {

    // Create a photo
    let photo = new Photo();
    photo.name = "Me and Bears";
    photo.description = "I am near polar bears";
    photo.filename = "photo-with-bears.jpg"
    photo.isPublished = true;

    // Create a photo metadata
    let metadata = new PhotoMetadata();
    metadata.height = 640;
    metadata.width = 480;
    metadata.compressed = true;
    metadata.comment = "cybershoot";
    metadata.orientation = "portait";
    metadata.photo = photo; // this way we connect them

    // Get entity repositories
    let photoRepository = connection.getRepository(Photo);
    let metadataRepository = connection.getRepository(PhotoMetadata);

    // First we should persist a photo
    await photoRepository.save(photo);

    // Photo is saved. Now we need to persist a photo metadata
    await metadataRepository.save(metadata);

    // Done
    console.log("Metadata is saved, and relation between metadata and photo is created in the database too");

}).catch(error => console.log(error));

Adding the inverse side of a relation

Relations can be unidirectional or bidirectional. Currently, our relation between PhotoMetadata and Photo is unidirectional. The owner of the relation is PhotoMetadata, and Photo doesn't know anything about PhotoMetadata. This makes it complicated to access photo metadata from the photo objects. To fix it we should add an inverse relation, and make relations between PhotoMetadata and Photo bidirectional. Let's modify our entities:

import {Entity, Column, PrimaryGeneratedColumn, OneToOne, JoinColumn} from "typeorm";
import {Photo} from "./Photo";

@Entity()
export class PhotoMetadata {

    /* ... other columns */

    @OneToOne(type => Photo, photo => photo.metadata)
    @JoinColumn()
    photo: Photo;
}
import {Entity, Column, PrimaryGeneratedColumn, OneToOne} from "typeorm";
import {PhotoMetadata} from "./PhotoMetadata";

@Entity()
export class Photo {

    /* ... other columns */

    @OneToOne(type => PhotoMetadata, photoMetadata => photoMetadata.photo)
    metadata: PhotoMetadata;
}

photo => photo.metadata is a function that returns the name of the inverse side of the relation. Here we show that the metadata property of the Photo class is where we store PhotoMetadata in the Photo class. Instead of passing a function that returns a property of the photo, you could alternatively simply pass a string to @OneToOne decorator, like "metadata". But we used this function-typed approach to make your refactoring easier.

Note that we should use @JoinColumn on one side of a relation only. Whichever side you put this decorator on will be the owning side of the relationship. The owning side of a relationship contains a column with a foreign key in the database.

Loading objects with their relations

Now let's load our photo, and its photo metadata in a single query. There are two ways to do it -- either with FindOptions or QueryBuilder. Let's use FindOptions first. The Repository.find method allows you to specify an object with the FindOptions interface. Using this you can customize your query to perform more complex queries.

import {createConnection} from "typeorm";
import {Photo} from "./entity/Photo";
import {PhotoMetadata} from "./entity/PhotoMetadata";

createConnection(/*...*/).then(async connection => {

    /*...*/
    let photoRepository = connection.getRepository(Photo);
    let photos = await photoRepository.find({
        alias: "photo",
        innerJoinAndSelect: {
            "metadata": "photo.metadata"
        }
    });


}).catch(error => console.log(error));

Here photos will contain an array of photos from the database, and each photo will contain its photo metadata.

alias is a required property of FindOptions. It's your own alias name of the data you are selecting. You'll use this alias in your where, order by, group by, join and other expressions.

We also used innerJoinAndSelect to inner join and select the data from photo.metadata. In photo.metadata, photo is an alias you used, and metadata is a property name with relation of the object you are selecting. "metadata": is a new alias to the data returned by the join expression.

Let's use QueryBuilder for the same purpose. QueryBuilder allows us to use more complex queries in an elegant way:

import {createConnection} from "typeorm";
import {Photo} from "./entity/Photo";
import {PhotoMetadata} from "./entity/PhotoMetadata";

createConnection(/*...*/).then(async connection => {

    /*...*/
    let photoRepository = connection.getRepository(Photo);
    let photos = await photoRepository.createQueryBuilder("photo")
            .innerJoinAndSelect("photo.metadata", "metadata")
            .getMany();


}).catch(error => console.log(error));

Using cascade options to automatically save related objects

We can setup cascade options in our relations, in the cases when we want our related object to be persisted whenever the other object is saved. Let's change our photo's @OneToOne decorator a bit:

export class Photo {
    /// ... other columns

    @OneToOne(type => PhotoMetadata, metadata => metadata.photo, {
        cascadeInsert: true,
        cascadeUpdate: true,
        cascadeRemove: true
    })
    metadata: PhotoMetadata;
}
  • cascadeInsert - automatically insert metadata in the relation if it does not exist in its table. This means that we don't need to manually insert a newly created photoMetadata object.
  • cascadeUpdate - automatically update metadata in the relation if something is changed in this object.
  • cascadeRemove - automatically remove metadata from its table if you removed metadata from photo object.

Using cascadeInsert allows us not to separately persist photo and separately persist metadata objects now. Now we can simply persist a photo object, and the metadata object will persist automatically because of cascade options.

createConnection(options).then(async connection => {

    // Create photo object
    let photo = new Photo();
    photo.name = "Me and Bears";
    photo.description = "I am near polar bears";
    photo.filename = "photo-with-bears.jpg"
    photo.isPublished = true;

    // Create photo metadata object
    let metadata = new PhotoMetadata();
    metadata.height = 640;
    metadata.width = 480;
    metadata.compressed = true;
    metadata.comment = "cybershoot";
    metadata.orientation = "portait";
    
    photo.metadata = metadata; // this way we connect them

    // Get repository
    let photoRepository = connection.getRepository(Photo);

    // Persisting a photo also persist the metadata
    await photoRepository.save(photo);

    console.log("Photo is saved, photo metadata is saved too.")

}).catch(error => console.log(error));

Creating a many-to-one / one-to-many relation

Let's create a many-to-one / one-to-many relation. Let's say a photo has one author, and each author can have many photos. First, let's create an Author class:

import {Entity, Column, PrimaryGeneratedColumn, OneToMany, JoinColumn} from "typeorm";
import {Photo} from "./Photo";

@Entity()
export class Author {

    @PrimaryGeneratedColumn()
    id: number;

    @Column()
    name: string;

    @OneToMany(type => Photo, photo => photo.author) // Note: we will create author property in the Photo class below
    photos: Photo[];
}

Author contains an inverse side of a relation. OneToMany is always an inverse side of relation, and it can't exist without ManyToOne on the other side of the relation.

Now let's add the owner side of the relation into the Photo entity:

import {Entity, Column, PrimaryGeneratedColumn, ManyToOne} from "typeorm";
import {PhotoMetadata} from "./PhotoMetadata";
import {Author} from "./Author";

@Entity()
export class Photo {

    /* ... other columns */

    @ManyToOne(type => Author, author => author.photos)
    author: Author;
}

In many-to-one / one-to-many relation, the owner side is always many-to-one. It means that the class that uses @ManyToOne will store the id of the related object.

After you run the application, the ORM will create the author table:

+-------------+--------------+----------------------------+
|                          author                         |
+-------------+--------------+----------------------------+
| id          | int(11)      | PRIMARY KEY AUTO_INCREMENT |
| name        | varchar(255) |                            |
+-------------+--------------+----------------------------+

It will also modify the photo table, adding a new author column and creating a foreign key for it:

+-------------+--------------+----------------------------+
|                         photo                           |
+-------------+--------------+----------------------------+
| id          | int(11)      | PRIMARY KEY AUTO_INCREMENT |
| name        | varchar(255) |                            |
| description | varchar(255) |                            |
| filename    | varchar(255) |                            |
| isPublished | boolean      |                            |
| author      | int(11)      | FOREIGN KEY                |
+-------------+--------------+----------------------------+

Creating a many-to-many relation

Let's create a many-to-one / many-to-many relation. Let's say a photo can be in many albums, and each album can contain many photos. Let's create an Album class:

import {Entity, PrimaryGeneratedColumn, Column, ManyToMany, JoinTable} from "typeorm";

@Entity()
export class Album {

    @PrimaryGeneratedColumn()
    id: number;

    @Column()
    name: string;

    @ManyToMany(type => Photo, photo => photo.albums, {  // Note: we will create "albums" property in the Photo class below
        cascadeInsert: true, // Allow to insert a new photo on album save
        cascadeUpdate: true // Allow to update a photo on album save
    })
    @JoinTable()
    photos: Photo[];
}

@JoinTable is required to specify that this is the owner side of the relationship.

Now let's add the inverse side of our relation to the Photo class:

export class Photo {
    /// ... other columns

    @ManyToMany(type => Album, album => album.photos, {
        cascadeInsert: true, // Allow to insert a new album on photo save
        cascadeUpdate: true // Allow to update an album on photo save
    })
    albums: Album[];
}

After you run the application, the ORM will create a album_photos_photo_albums junction table:

+-------------+--------------+----------------------------+
|                album_photos_photo_albums                |
+-------------+--------------+----------------------------+
| album_id_1  | int(11)      | PRIMARY KEY FOREIGN KEY    |
| photo_id_2  | int(11)      | PRIMARY KEY FOREIGN KEY    |
+-------------+--------------+----------------------------+

Don't forget to register the Album class with your connection in the ORM:

const options: CreateConnectionOptions = {
    // ... other options
    entities: [Photo, PhotoMetadata, Author, Album]
};

Now let's insert albums and photos to our database:

let connection = await createConnection(options);

// Create a few albums
let album1 = new Album();
album1.name = "Bears";

let album2 = new Album();
album2.name = "Me";

// Create a few photos
let photo1 = new Photo();
photo1.name = "Me and Bears";
photo1.description = "I am near polar bears";
photo1.filename = "photo-with-bears.jpg";
photo1.albums = [album1];

let photo2 = new Photo();
photo2.name = "Me and Bears";
photo2.description = "I am near polar bears";
photo2.filename = "photo-with-bears.jpg";
photo2.albums = [album1];

// Get entity repository
let photoRepository = connection.getRepository(Photo);

// First save a first photo
// We only save the photos, albums are persisted
// automatically because of cascade options
await photoRepository.save(photo1);

// Second save a first photo
await photoRepository.save(photo2);

console.log("Both photos have been saved");

Using QueryBuilder

You can use QueryBuilder to build even more complex queries. For example, you can do this:

let photoRepository = connection.getRepository(Photo);
let photos = await photoRepository
    .createQueryBuilder("photo") // first argument is an alias. Alias is what you are selecting - photos. You must specify it.
    .innerJoinAndSelect("photo.metadata", "metadata")
    .leftJoinAndSelect("photo.albums", "albums")
    .where("photo.isPublished=true")
    .andWhere("(photo.name=:photoName OR photo.name=:bearName)")
    .orderBy("photo.id", "DESC")
    .skip(5)
    .take(10)
    .setParameters({ photoName: "My", bearName: "Mishka" })
    .getMany();

This query builder will select all photos that are published and whose name is "My" or "Mishka". It will select results from position 5 (pagination offset), and will select only 10 results (pagination limit). The selection result will be ordered by id in descending order. The photos' albums will be left-joined and their metadata will be inner joined.

You'll use the query builder in your application a lot. Learn more about QueryBuilder here.

Learn more

Samples

Take a look at the samples in ./sample for examples of usage.

There are a few repositories which you can clone and start with:

Extensions

There are several extensions that simplify TypeORM integration with other modules:

Contributing

Learn about contribution here and how to setup your development environment here.

About

ORM for TypeScript and JavaScript (ES7, ES6, ES5). Supports MySQL, PostgreSQL, MariaDB, SQLite, MS SQL Server, Oracle, SAP Hana, WebSQL databases. Works in NodeJS, Browser, Ionic, Cordova and Electron platforms.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • TypeScript 99.7%
  • JavaScript 0.3%